scholarly journals Regulatory functions of a non-ligand-binding thyroid hormone receptor isoform.

1991 ◽  
Vol 2 (7) ◽  
pp. 565-574 ◽  
Author(s):  
T Hermann ◽  
X K Zhang ◽  
M Tzukerman ◽  
K N Wills ◽  
G Graupner ◽  
...  

Gene regulation by thyroid hormones is mediated through multiple nuclear receptors. Only some of these thyroid hormone receptor (TR) isoforms become transcriptional enhancers in the presence of the thyroid hormone T3. Here we analyze the regulatory function of the human TR alpha 2 isoform. This protein does not bind T3 and is not a transcriptional activator of thyroid hormone-responsive elements (TRE). Transfected TR alpha 2 functions as a constitutive repressor of the transcriptional activators TR alpha 1 and TR beta 1 but also represses heterologous receptors, including the retinoic acid receptor and the estrogen receptor, which can activate TRE-controlled genes. TR alpha 2 protein showed strongly reduced DNA binding to a palindromic TRE when compared with the active TRs. Hybrid receptor analysis revealed that the special properties of the TR alpha 2 protein, including its repressor function and DNA binding characteristics, are intrinsic properties of its carboxyterminus and can be transferred to other receptors. Although it has been shown that the active TRs can act as repressors and silencers due to their strong DNA binding in the absence of hormone, our data show that TR alpha 2 is unlikely to inhibit TRs and other receptors through a competitive DNA binding mechanism. Antibody gel shift experiments suggest that repression by TR alpha 2 might result from interaction with active receptors. Thus, the receptor-like TR alpha 2 isoform differs from typical nuclear receptors in its DNA-binding and ligand-binding properties and appears to regulate the activity of other receptors via protein-protein interaction.

1994 ◽  
Vol 14 (10) ◽  
pp. 7025-7035 ◽  
Author(s):  
R Apfel ◽  
D Benbrook ◽  
E Lernhardt ◽  
M A Ortiz ◽  
G Salbert ◽  
...  

The steroid/hormone nuclear receptor superfamily comprises several subfamilies of receptors that interact with overlapping DNA sequences and/or related ligands. The thyroid/retinoid hormone receptor subfamily has recently attracted much interest because of the complex network of its receptor interactions. The retinoid X receptors (RXRs), for instance, play a very central role in this subfamily, forming heterodimers with several receptors. Here we describe a novel member of this subfamily that interacts with RXR. Using a v-erbA probe, we obtained a cDNA which encodes a novel 445-amino-acid protein, RLD-1, that contains the characteristic domains of nuclear receptors. Northern (RNA) blot analysis showed that in mature rats, the receptor is highly expressed in spleen, pituitary, lung, liver, and fat. In addition, weaker expression is observed in several other tissues. Amino acid sequence alignment and DNA-binding data revealed that the DNA-binding domain of the new receptor is related to that of the thyroid/retinoid subgroup of nuclear receptors. RLD-1 preferentially binds as a heterodimer with RXR to a direct repeat of the half-site sequence 5'-G/AGGTCA-3', separated by four nucleotides (DR-4). Surprisingly, this binding is dependent to a high degree on the nature of the spacing nucleotides. None of the known nuclear receptor ligands activated RLD-1. In contrast, a DR-4-dependent constitutive transcriptional activation of a chloramphenicol acetyltransferase reporter gene by the RLD-1/RXR alpha heterodimer was observed. Our data suggest a highly specific role for this novel receptor within the network of gene regulation by the thyroid/retinoid receptor subfamily.


1993 ◽  
Vol 13 (12) ◽  
pp. 7540-7552 ◽  
Author(s):  
D E Banker ◽  
R N Eisenman

Thyroid hormone receptor acts as a hormone-dependent transcriptional transactivator and as a transcriptional repressor in the absence of thyroid hormone. Specifically, thyroid hormone receptor can repress retinoic acid-induced gene expression through interactions with retinoic acid receptor. (Retinoic acid is a potent teratogen in the frog Xenopus laevis, acting at early embryonic stages to interfere with the formation of anterior structures. Endogenous retinoic acid is thought to act in normal anterior-posterior axis formation.) We have previously shown that thyroid hormone receptor RNA (alpha isotype) is expressed and polysome-associated during Xenopus embryogenesis preceding thyroid gland maturation and endogenous thyroid hormone production (D. E. Banker, J. Bigler, and R. N. Eisenman, Mol. Cell. Biol. 11:5079-5089, 1991). To determine whether thyroid hormone receptor might influence the effects of retinoic acid in early frog development, we have examined the results of ectopic thyroid hormone receptor expression on retinoic acid teratogenesis. We demonstrate that microinjections of full-length thyroid hormone receptor RNA protect injected embryos from retinoic acid teratogenesis. DNA binding is apparently essential to this protective function, as truncated thyroid hormone receptors, lacking DNA-binding domains but including hormone-binding and dimerization domains, do not protect from retinoic acid. We have shown that microinjections of these dominant-interfering thyroid hormone receptors, as well as anti-thyroid hormone receptor antibodies, increase retinoic acid teratogenesis in injected embryos, presumably by inactivating endogenous thyroid hormone receptor. This finding suggests that endogenous thyroid hormone receptors may act to limit retinoic acid sensitivity. On the other hand, after thyroid hormone treatment, ectopic thyroid hormone receptor mediates teratogenesis that is indistinguishable from the dorsoanterior deficiencies produced in retinoic acid teratogenesis. The previously characterized retinoic acid-responsive gene, Xhox.lab2, can be induced by thyroid hormone in embryos ectopically expressing thyroid hormone receptor and is less responsive to retinoic acid in such embryos. The fact that both thyroid hormone and retinoic acid can affect overlapping gene expression pathways to produce abnormal embryonic axes and can regulate the same early-expressed gene suggests a model in which thyroid hormone receptor blocks retinoic acid receptor-mediated teratogenesis by directly repressing retinoic acid-responsive genes.


1993 ◽  
Vol 13 (12) ◽  
pp. 7540-7552
Author(s):  
D E Banker ◽  
R N Eisenman

Thyroid hormone receptor acts as a hormone-dependent transcriptional transactivator and as a transcriptional repressor in the absence of thyroid hormone. Specifically, thyroid hormone receptor can repress retinoic acid-induced gene expression through interactions with retinoic acid receptor. (Retinoic acid is a potent teratogen in the frog Xenopus laevis, acting at early embryonic stages to interfere with the formation of anterior structures. Endogenous retinoic acid is thought to act in normal anterior-posterior axis formation.) We have previously shown that thyroid hormone receptor RNA (alpha isotype) is expressed and polysome-associated during Xenopus embryogenesis preceding thyroid gland maturation and endogenous thyroid hormone production (D. E. Banker, J. Bigler, and R. N. Eisenman, Mol. Cell. Biol. 11:5079-5089, 1991). To determine whether thyroid hormone receptor might influence the effects of retinoic acid in early frog development, we have examined the results of ectopic thyroid hormone receptor expression on retinoic acid teratogenesis. We demonstrate that microinjections of full-length thyroid hormone receptor RNA protect injected embryos from retinoic acid teratogenesis. DNA binding is apparently essential to this protective function, as truncated thyroid hormone receptors, lacking DNA-binding domains but including hormone-binding and dimerization domains, do not protect from retinoic acid. We have shown that microinjections of these dominant-interfering thyroid hormone receptors, as well as anti-thyroid hormone receptor antibodies, increase retinoic acid teratogenesis in injected embryos, presumably by inactivating endogenous thyroid hormone receptor. This finding suggests that endogenous thyroid hormone receptors may act to limit retinoic acid sensitivity. On the other hand, after thyroid hormone treatment, ectopic thyroid hormone receptor mediates teratogenesis that is indistinguishable from the dorsoanterior deficiencies produced in retinoic acid teratogenesis. The previously characterized retinoic acid-responsive gene, Xhox.lab2, can be induced by thyroid hormone in embryos ectopically expressing thyroid hormone receptor and is less responsive to retinoic acid in such embryos. The fact that both thyroid hormone and retinoic acid can affect overlapping gene expression pathways to produce abnormal embryonic axes and can regulate the same early-expressed gene suggests a model in which thyroid hormone receptor blocks retinoic acid receptor-mediated teratogenesis by directly repressing retinoic acid-responsive genes.


1994 ◽  
Vol 14 (10) ◽  
pp. 7025-7035
Author(s):  
R Apfel ◽  
D Benbrook ◽  
E Lernhardt ◽  
M A Ortiz ◽  
G Salbert ◽  
...  

The steroid/hormone nuclear receptor superfamily comprises several subfamilies of receptors that interact with overlapping DNA sequences and/or related ligands. The thyroid/retinoid hormone receptor subfamily has recently attracted much interest because of the complex network of its receptor interactions. The retinoid X receptors (RXRs), for instance, play a very central role in this subfamily, forming heterodimers with several receptors. Here we describe a novel member of this subfamily that interacts with RXR. Using a v-erbA probe, we obtained a cDNA which encodes a novel 445-amino-acid protein, RLD-1, that contains the characteristic domains of nuclear receptors. Northern (RNA) blot analysis showed that in mature rats, the receptor is highly expressed in spleen, pituitary, lung, liver, and fat. In addition, weaker expression is observed in several other tissues. Amino acid sequence alignment and DNA-binding data revealed that the DNA-binding domain of the new receptor is related to that of the thyroid/retinoid subgroup of nuclear receptors. RLD-1 preferentially binds as a heterodimer with RXR to a direct repeat of the half-site sequence 5'-G/AGGTCA-3', separated by four nucleotides (DR-4). Surprisingly, this binding is dependent to a high degree on the nature of the spacing nucleotides. None of the known nuclear receptor ligands activated RLD-1. In contrast, a DR-4-dependent constitutive transcriptional activation of a chloramphenicol acetyltransferase reporter gene by the RLD-1/RXR alpha heterodimer was observed. Our data suggest a highly specific role for this novel receptor within the network of gene regulation by the thyroid/retinoid receptor subfamily.


1998 ◽  
Vol 12 (1) ◽  
pp. 34-44 ◽  
Author(s):  
Ying Liu ◽  
Akira Takeshita ◽  
Takashi Nagaya ◽  
Aria Baniahmad ◽  
William W. Chin ◽  
...  

Abstract We have employed a chimeric receptor system in which we cotransfected yeast GAL4 DNA-binding domain/retinoid X receptor β ligand-binding domain chimeric receptor (GAL4RXR), thyroid hormone receptor-β (TRβ), and upstream activating sequence-reporter plasmids into CV-1 cells to study repression, derepression, and transcriptional activation. In the absence of T3, unliganded TR repressed transcription to 20% of basal level, and in the presence of T3, liganded TRβ derepressed transcription to basal level. Using this system and a battery of TRβ mutants, we found that TRβ/RXR heterodimer formation is necessary and sufficient for basal repression and derepression in this system. Additionally, an AF-2 domain mutant (E457A) mediated basal repression but not derepression, suggesting that interaction with a putative coactivator at this site may be critical for derepression. Interestingly, a mutant containing only the TRβ ligand binding domain (LBD) not only mediated derepression, but also stimulated transcriptional activation 10-fold higher than basal level. Studies using deletion and domain swap mutants localized an inhibitory region to the TRβ DNA-binding domain. Titration studies further suggested that allosteric changes promoting interaction with coactivators may account for enhanced transcriptional activity by LBD. In summary, our findings suggest that TR heterodimer formation with RXR is important for repression and derepression, and coactivator interaction with the AF-2 domain may be needed for derepression in this chimeric system. Additionally, there may be an inhibitory region in the DNA-binding domain, which reduces TR interaction with coactivators, and prevents full-length wild-type TRβ from achieving transcriptional activation above basal level in this chimeric receptor system.


2008 ◽  
Vol 41 (1) ◽  
pp. 25-34 ◽  
Author(s):  
Anne Wulf ◽  
Marianne G Wetzel ◽  
Maxim Kebenko ◽  
Meike Kröger ◽  
Angelika Harneit ◽  
...  

Thyroid hormone 3,3′,5-tri-iodothyronine (T3) regulates gene expression in a positive and negative manner. Here, we analyzed the regulation of a positively (mitochondrial glycerol-3-phosphate dehydrogenase) and negatively T3-regulated target gene (TSHα). Thyroid hormone receptor (TR) activates mGPDH but not TSH promoter fragments in a mammalian one-hybrid assay. Furthermore, we investigated functional consequences of targeting TR to DNA independent of its own DNA-binding domain (DBD). Using a chimeric fusion protein of the DBD of yeast transcription factor Gal4 with TR, we demonstrated a positive regulation of gene transcription in response to T3. T3-mediated activation of this chimeric protein is further increased after an introduction of point mutations within the DBD of TR. Moreover, we investigated the capacity of TR to negatively regulate gene transcription on a DNA-tethered cofactor platform. A direct binding of TR to DNA via its own DBD is dispensable in this assay. We investigated functional consequences of point mutations affecting different domains of TR. Our data indicate that the DBD of TR plays a key role in direct DNA binding on positively but not on negatively T3-regulated target genes. Nevertheless, the DBD is involved in mediating negative gene regulation independent of its capacity to bind DNA.


Sign in / Sign up

Export Citation Format

Share Document