scholarly journals Expression of soybean nodulin 26 in transgenic tobacco. Targeting to the vacuolar membrane and effects on floral and seed development.

1995 ◽  
Vol 6 (1) ◽  
pp. 109-117 ◽  
Author(s):  
Y Zhang ◽  
D M Roberts

Nodulin 26 is an integral membrane protein of the symbiosome membrane of nitrogen-fixing soybean nodules. We expressed a nodulin 26 cDNA in transgenic tobacco (TN26 tobacco) under the control of the cauliflower mosaic virus 35S promoter to study subcellular targeting and the physiological effect(s) of its expression. Based on Northern and Western blots, the expression of nodulin 26 mRNA and protein in transgenic plants is high in apical shoot sections, flowers, and stems, low in mature leaves, and absent in roots. Western blot analysis revealed high levels of transgenic nodulin 26 protein in tonoplast membranes. In contrast, nodulin 26 protein was not found in isolated plasma membranes, the soluble fraction, nor in chloroplast and mitochondria-enriched membrane fractions. About 50-60% of the flowers and pods from TN26 tobacco plants abscised prematurely. Seed capsule size and seed fill per capsule from the remainder of surviving flowers were about 50% of that of control plants. Pollen viability was found to be normal, but flowers from TN26 tobacco plants showed shorter anther filaments compared with control plants. Normal seed production and capsule size was restored by manually crossing the stigmas from TN26 plants with isolated pollen from either transgenic or control plants. Thus, the aberrant filament growth could have resulted in the reproductive defects associated with the plants.

1999 ◽  
Vol 89 (7) ◽  
pp. 540-545 ◽  
Author(s):  
R. G. Guevara-González ◽  
P. L. Ramos ◽  
R. F. Rivera-Bustamante

The role of the pepper huasteco virus (PHV) coat protein (CP) gene during the infection was investigated in three different hosts by using mutations that produced truncated proteins and by complementation assays in transgenic plants. The infectivity analysis revealed that mutants that express truncated CP (CP7 and CP191) behave like the wild-type virus when inoculated onto pepper and Nicotiana benthamiana plants in terms of symptom expression and viral DNA movement. On the contrary, the CP7 mutant was unable to systemically infect tobacco plants, whereas only 10% of the plants inoculated with the CP191 mutant became infected. The CP7 mutant was complemented by coinoculating it with another geminivirus (taino tomato mottle virus). No complementation was observed in plants from nine transgenic tobacco lines expressing CP under the control of the cauliflower mosaic virus (CaMV) 35S promoter. However, 3 out of 10 lines expressing CP under the control of its own promoter (693 nucleotides) were able to complement the CP7 mutant. Interestingly, upon infection, the levels of CP mRNA in 693CP plants increased dramatically, probably due to transactivation of the CP promoter by the viral protein AC2.


2009 ◽  
Vol 46 (2) ◽  
pp. 63-75 ◽  
Author(s):  
Roya Razavizadeh ◽  
Ali Ehsanpour

Effects of salt stress on proline content, expression of delta-1-pyrroline-5-carboxylate synthetase, and activities of catalase and ascorbate peroxidase in transgenic tobacco plantsIn arid and semiarid regions, soil salinity limits crop production. Proline accumulation in transgenic plants results in increased stress tolerance, but the underlying mechanism was unclear. To elucidate it, effects of salt stress on the expression pattern of Δ1-pyrroline-5-carboxylate synthetase (P5CS), proline content, catalase (CAT), and ascorbate peroxidase (APX) activities were analyzed in transgenic tobacco (Nicotiana tabacumcv. Wisconsin). Transgenic tobacco plants containing CaMV 35S promoter and theP5CSgene from moth bean (Vigna aconitifolia), linked to theNPTIIgene, were culturedin vitrowith or without 300 mM NaCl. The expression pattern ofP5CSwas evaluated using semiquantitative RT-PCR (reverse transcription-polymerase chain reaction). Time-course experiments showed an increase in proline content after 4 h of the treatment. The level ofP5CStranscripts was increased significantly in leaves and roots of transgenic plants after 24 and 48 h of treatment. This rise in transcripts was concomitant with the highest increase in proline content. In addition, CAT and APX activities increased under salt stress, and their highest activities were observed after 24 and 48 h of NaCl treatment. These results suggest thatP5CSis an inducible gene regulating the activities of CAT and APX and the accumulation of proline in plants subjected to salt stress.


2000 ◽  
Vol 13 (6) ◽  
pp. 599-605 ◽  
Author(s):  
Yang Yang ◽  
Biao Ding ◽  
David C. Baulcombe ◽  
Jeanmarie Verchot

The 25K, 12K, and 8K proteins and coat protein (CP) of Potato virus X (PVX) are required for virus cell-to-cell movement. In this study, experiments were conducted to determine whether the PVX 25K protein moves cell to cell and to explore potential interactions between the PVX 25K, 12K, and 8K proteins and CP. The PVX 25K gene was fused to the green fluorescent protein (GFP) gene and inserted into plasmids adjacent to the cauliflower mosaic virus 35S promoter. These plasmids were introduced by biolistic bombardment to transgenic tobacco expressing the PVX 12K, 8K, and CP genes. The GFP:25K fused proteins moved cell to cell on nontransgenic tobacco and tobacco expressing either the 12K or 8K proteins. However, the GFP:25K proteins did not move on transgenic tobacco expressing the combined 12K/8K genes or the CP gene. Thus, movement of the PVX 25K protein through plas-modesmata may be regulated by interactions with other PVX proteins.


2019 ◽  
Author(s):  
Maryam Ghasemzadeh ◽  
Mahdi Khozeai ◽  
Hamzeh Amiri

AbstractTo investigate the effect of increased glutamate-semialdehyde aminotransferase (GSA) on photosynthetic capacity and growth, tobacco (Nicoliana tabacum L. Xanti) plants with increased levels of glutamate-semialdehyde aminotransferase protein were produced. This was achieved using a cassette composed of a full-length Medicago sative cDNA under the control of the cauliflower mosaic virus 35S promoter. The results revealed distinct impacts of GSA activity on photosynthesis rate and growth in GSA over expression tobacco plants. In transgenic plants with increased GSA activity, an increase in soluble and insoluble sugars accumulation was evident. Total biomass, leaf area, plant height and internode 3-4 were increased in GSA sense plants, compared with equivalent wild-type tobacco plants. Moreover, transgenic tobacco plants with increased GSA activity exhibit higher levels of 5-aminolevulinic acid (ALA) accumulation and increased in content of chlorophyll and carotenoids pigments. Collectively, our data suggest that higher level of GSA activity gives an advantage to photosynthesis, growth in tobacco plants. This work also provides a case study that an individual enzyme in the biosynthesis of chlorophyll pathway may serve as a useful target for genetic engineering to improve photosynthesis and growth in plants.HighlightOverexpression of glutamate-semialdehyde aminotransferase (GSA) increase photosynthetic capacity, growth in tobacco.


2021 ◽  
Author(s):  
Lais Santos Freire ◽  
Jamilly Azevedo Leal Sena ◽  
Marcio Gilberto Costa ◽  
Fatima Alvim

Abstract Paraquat (1,1'-dimethyl-4,4'-bipyridinium dichloride) is a contact non-selective herbicide, widely used in agriculture in several countries. Proteins induced by paraquat have been the subject of great interest because of the possibility of conferring herbicide resistance when introduced into crops. In this work, we analyzed a paraquat-inducible protein B-like ( cvpqiB ) gene, isolated from Chromobacterium violaceum, in conferring tolerance to paraquat in transgenic tobacco. A DNA fragment containing the pqiB coding sequence was isolated from the C. violaceum ATCC12472 genome, inserted into the pCAMBIA1390 vector, under the control of the cauliflower mosaic virus (CaMV) 35S promoter, and used in Agrobacterium -mediated transformation of Nicotiana tabacum cv. Havana. Analysis of the regenerants revealed the incorporation of cvpqiB into the tobacco genome and its transmission in a Mendelian fashion to the progeny of transgenic plants. Sensitivity assays using tobacco leaves demonstrated that the transgenic plants were tolerant to concentrations up to 50 µM paraquat, whereas the wild-type (WT) plants exhibited intolerance to concentrations higher than 1 μM of the herbicide. Paraquat-treated leaves of the transgenic plants also exhibited significantly reduced electrolyte leakage and their chlorophyll content was not impacted as observed in the WT plants. Besides, in contrast to the WT, negligible amounts of hydrogen peroxide (H 2 O 2 ) were detected in paraquat-treated seedlings of the transgenic plants, as revealed by 3,3’-diaminobenzidine (DAB) staining. Collectively, these results indicate that the cvpqiB gene is functional in plants and may be further used in the genetic engineering of crop plants aiming paraquat tolerance.


Sign in / Sign up

Export Citation Format

Share Document