scholarly journals CD44/chondroitin sulfate proteoglycan and alpha 2 beta 1 integrin mediate human melanoma cell migration on type IV collagen and invasion of basement membranes.

1996 ◽  
Vol 7 (3) ◽  
pp. 383-396 ◽  
Author(s):  
J R Knutson ◽  
J Iida ◽  
G B Fields ◽  
J B McCarthy

Tumor cell invasion of basement membranes (BM) represents one of the critical steps in the metastatic process. Tumor cell recognition of individual BM matrix components may involve individual cell adhesion receptors, such as integrins or cell surface proteoglycans, or may involve a coordinate action of both types of receptors. In this study, we have focused on the identification of a cell surface CD44/chondroitin sulfate proteoglycan (CSPG) and alpha 2 beta 1 integrin on human melanoma cells that are both directly involved in the in vitro invasion of reconstituted BM via a type IV collagen-dependent mechanism. Interfering with cell surface expression of human melanoma CSPG with either p-nitro-phenyl-beta-D-xylopyranoside treatment or anti-CD44 monoclonal antibody (mAb) preincubation (mAb) preincubation inhibits melanoma cell invasion through reconstituted BM. These treatments also strongly inhibit melanoma cell migration on type IV collagen, however, they are ineffective at inhibiting cell adhesion to type IV collagen. Purified melanoma cell surface CD44/CSPG, or purified chondroitin sulfate, bind to type IV collagen affinity columns, consistent with a role for CD44/CSPG-type IV collagen interactions in mediating tumor cell invasion. In contrast, melanoma cell migration on laminin (LM) does not involve CD44/CSPG, nor does CD44/CSPG bind to LM, suggesting that CD44/CSPG-type IV collagen interactions are specific in nature. Additionally, anti-alpha 2 and anti-beta 1 integrin mAbs are capable of blocking melanoma cell invasion of reconstituted BM. Both of these anti-integrin mAbs inhibit melanoma cell adhesion and migration on type IV collagen, whereas only anti-beta 1 mAb inhibits cell adhesion to LM. Collectively, these results indicate that melanoma cell adhesion to type IV collagen is an important consideration in invasion of reconstituted BM in vitro, and suggest that CD44/CSPG and alpha 2 beta 1 integrin may collaborate to promote human melanoma cell adhesion, migration, and invasion in vivo.

1990 ◽  
Vol 111 (1) ◽  
pp. 261-270 ◽  
Author(s):  
M K Chelberg ◽  
J B McCarthy ◽  
A P Skubitz ◽  
L T Furcht ◽  
E C Tsilibary

The adhesion and motility of tumor cells on basement membranes is a central consideration in tumor cell invasion and metastasis. Basement membrane type IV collagen directly promotes the adhesion and migration of various tumor cell types in vitro. Our previous studies demonstrated that tumor cells adhered and spread on surfaces coated with intact type IV collagen or either of the two major enzymatically purified domains of this protein. Only one of these major domains, the pepsin-generated major triple helical fragment, also supported tumor cell motility in vitro, implicating the involvement of the major triple helical region in type IV collagen-mediated tumor cell invasion in vivo. The present studies extend our previous observations using a synthetic peptide approach. A peptide, designated IV-H1, was derived from a continuous collagenous region of the major triple helical domain of the human alpha 1(IV) chain. This peptide, which has the sequence GVKGDKGNPGWPGAP, directly supported the adhesion, spreading, and motility of the highly metastatic K1735 M4 murine melanoma cell line, as well as the adhesion and spreading of other cell types, in a concentration-dependent manner in vitro. Furthermore, excess soluble peptide IV-H1, or polyclonal antibodies directed against peptide IV-H1, inhibited type IV collagen-mediated melanoma cell adhesion, spreading, and motility, but had no effect on these cellular responses to type I collagen. The full complement of cell adhesion, spreading, and motility promoting activities was dependent upon the preservation of the three prolyl residues in the peptide IV-H1 sequence. These studies indicate that peptide IV-H1 represents a cell-specific adhesion, spreading, and motility promoting domain that is active within the type IV collagen molecule.


1992 ◽  
Vol 118 (2) ◽  
pp. 431-444 ◽  
Author(s):  
J Iida ◽  
A P Skubitz ◽  
L T Furcht ◽  
E A Wayner ◽  
J B McCarthy

Cellular recognition and adhesion to the extracellular matrix (ECM) has a complex molecular basis, involving both integrins and cell surface proteoglycans (PG). The current studies have used specific inhibitors of chondroitin sulfate proteoglycan (CSPG) synthesis along with anti-alpha 4 integrin subunit monoclonal antibodies to demonstrate that human melanoma cell adhesion to an A-chain derived, 33-kD carboxyl-terminal heparin binding fragment of human plasma fibronectin (FN) involves both cell surface CSPG and alpha 4 beta 1 integrin. A direct role for cell surface CSPG in mediating melanoma cell adhesion to this FN fragment was demonstrated by the identification of a cationic synthetic peptide, termed FN-C/H-III, within the fragment. FN-C/H-III is located close to the amino terminal end of the fragment, representing residues #1721-1736 of intact FN. FN-C/H-III binds CSPG directly, can inhibit CSPG binding to the fragment, and promotes melanoma cell adhesion by a CSPG-dependent, alpha 4 beta 1 integrin-independent mechanism. A scrambled version of FN-C/H-III does not inhibit CSPG binding or cell adhesion to the fragment or to FN-C/H-III, indicating that the primary sequence of FN-C/H-III is important for its biological properties. Previous studies have identified three other synthetic peptides from within this 33-kD FN fragment that promote cell adhesion by an arginyl-glycyl-aspartic acid (RGD) independent mechanism. Two of these synthetic peptides (FN-C/H-I and FN-C/H-II) bind heparin and promote cell adhesion, implicating cell surface PG in mediating cellular recognition of these two peptides. Additionally, a third synthetic peptide, CS1, is located in close proximity to FN-C/H-I and FN-C/H-II and it promotes cell adhesion by an alpha 4 beta 1 integrin-dependent mechanism. In contrast to FN-C/H-III, cellular recognition of these three peptides involved contributions from both CSPG and alpha 4 integrin subunits. Of particular importance are observations demonstrating that CS1-mediated melanoma cell adhesion could be inhibited by interfering with CSPG synthesis or expression. Since CS1 does not bind CSPG, the results suggest that CSPG may modify the function and/or activity of alpha 4 beta 1 integrin on the surface of human melanoma cells. Together, these results support a model in which the PG and integrin binding sites within the 33-kD fragment may act in concert to focus these two cell adhesion receptors into close proximity on the cell surface, thereby influencing initial cellular recognition events that contribute to melanoma cell adhesion on this fragment.


2005 ◽  
Vol 29 (3) ◽  
pp. 260-266 ◽  
Author(s):  
Sylvie Pasco ◽  
Bertrand Brassart ◽  
Laurent Ramont ◽  
François-Xavier Maquart ◽  
Jean-Claude Monboisse

Biochemistry ◽  
1997 ◽  
Vol 36 (49) ◽  
pp. 15404-15410 ◽  
Author(s):  
Changfen Li ◽  
James B. McCarthy ◽  
Leo T. Furcht ◽  
Gregg B. Fields

2004 ◽  
Vol 279 (42) ◽  
pp. 43503-43513 ◽  
Author(s):  
Diane Baronas-Lowell ◽  
Janelle L. Lauer-Fields ◽  
Jeffrey A. Borgia ◽  
Gian Franco Sferrazza ◽  
Mohammad Al-Ghoul ◽  
...  

1995 ◽  
Vol 309 (3) ◽  
pp. 765-771 ◽  
Author(s):  
P A Underwood ◽  
F A Bennett ◽  
A Kirkpatrick ◽  
P A Bean ◽  
B A Moss

To date no specific location on laminin 1 for the binding of alpha 2 beta 1 integrin has been described, although recent evidence supports a location in the E1XNd fragment of the cross region. We have identified a peptide sequence from this region, in the beta 1 chain of laminin 1, YGYYGDALR, which inhibits the adhesion of endothelial cells to laminin 1 and type-IV collagen. A structurally related sequence from the CNBr-cleaved fragment CB3 of the alpha 1 chain of collagen type IV, FYFDLR, inhibits endothelial cell adhesion to both collagen types I and IV and laminin 1. The CB3 fragment containing the FYFDLR sequence has been shown to contain binding sites for both alpha 1 beta 1 and alpha 2 beta 1 integrins. Present experiments with anti-integrin antibodies indicate that the alpha 2 beta 1 integrin on endothelial cells can account for all the cell binding to collagen types I and IV, and that this integrin makes a major contribution towards the adhesion of these cells to laminin 1. We therefore propose that the peptide FYFDLR participates in alpha 2 beta 1 binding to collagen type IV and that the putatively structurally similar peptide, YGYYGDALR, participates in alpha 2 beta 1 binding to laminin 1. This is the first account of structurally related peptide sequences from laminin 1 and type-IV collagen which show reciprocal inhibition of cell adhesion to either ligand and which might form part of a common integrin-binding site, as well as the first suggestion of a precise location contributing to the alpha 2 beta 1 integrin binding site on laminin 1.


1984 ◽  
Vol 99 (4) ◽  
pp. 1416-1423 ◽  
Author(s):  
J W Dennis ◽  
C A Waller ◽  
V Schirrmacher

MDW4, a wheat germ agglutinin-resistant nonmetastatic mutant of the highly metastatic murine tumor cell line called MDAY-D2 has previously been shown to attach to fibronectin and type IV collagen, whereas MDAY-D2 and phenotypic revertants of MDW4 attached poorly to these substrates. The increased adhesiveness of the mutant cells appeared to be closely related to a lesion in cell surface carbohydrate structures. In an effort to identify the carbohydrates involved in cell attachment, glycopeptides isolated from mutant and wild-type cells as well as from purified glycoproteins were tested for their ability to inhibit the attachment of MDW4 cells to plastic surfaces coated with fibronectin, laminin, or type IV collagen. The addition of mannose-terminating glycopeptide to the adhesion assay inhibited MDW4 cell attachment to type IV collagen. In contrast, a sialylated poly N-acetyllactosamine-containing glycopeptide, isolated from wheat germ agglutinin-sensitive MDAY-D2 cells but absent in MDW4 cells, inhibited MDW4 attachment to laminin. None of the glycopeptides used in this study inhibited attachment of MDW4 cells to fibronectin-coated plastic. Peptide N-glycosidase treatment of the cells to remove surface asparagine-linked oligosaccharides inhibited MDW4 adhesion to type IV collagen, but not to laminin, and the same treatment of the wheat germ agglutinin-sensitive cells enhanced attachment to laminin. Tumor cell attachment to, and detachment from, the sublaminal matrix protein laminin and type IV collagen are thought to be important events in the metastatic process. Our results indicate that tumor cell attachment to these proteins may be partially modulated by the expression of specific oligosaccharide structures associated with the cell surface.


1999 ◽  
Vol 10 (2) ◽  
pp. 271-282 ◽  
Author(s):  
André Lochter ◽  
Marc Navre ◽  
Zena Werb ◽  
Mina J. Bissell

Tumor cell invasion relies on cell migration and extracellular matrix proteolysis. We investigated the contribution of different integrins to the invasive activity of mouse mammary carcinoma cells. Antibodies against integrin subunits α6 and β1, but not against α1 and α2, inhibited cell locomotion on a reconstituted basement membrane in two-dimensional cell migration assays, whereas antibodies against β1, but not against α6 or α2, interfered with cell adhesion to basement membrane constituents. Blocking antibodies against α1 integrins impaired only cell adhesion to type IV collagen. Antibodies against α1, α2, α6, and β1, but not α5, integrin subunits reduced invasion of a reconstituted basement membrane. Integrins α1 and α2, which contributed only marginally to motility and adhesion, regulated proteinase production. Antibodies against α1 and α2, but not α6 and β1, integrin subunits inhibited both transcription and protein expression of the matrix metalloproteinase stromelysin-1. Inhibition of tumor cell invasion by antibodies against α1 and α2 was reversed by addition of recombinant stromelysin-1. In contrast, stromelysin-1 could not rescue invasion inhibited by anti-α6 antibodies. Our data indicate that α1 and α2 integrins confer invasive behavior by regulating stromelysin-1 expression, whereas α6 integrins regulate cell motility. These results provide new insights into the specific functions of integrins during tumor cell invasion.


Oncogene ◽  
2003 ◽  
Vol 22 (1) ◽  
pp. 98-108 ◽  
Author(s):  
Louis Hodgson ◽  
Andrew J Henderson ◽  
Cheng Dong

Sign in / Sign up

Export Citation Format

Share Document