scholarly journals Identification of asparagine-linked oligosaccharides involved in tumor cell adhesion to laminin and type IV collagen.

1984 ◽  
Vol 99 (4) ◽  
pp. 1416-1423 ◽  
Author(s):  
J W Dennis ◽  
C A Waller ◽  
V Schirrmacher

MDW4, a wheat germ agglutinin-resistant nonmetastatic mutant of the highly metastatic murine tumor cell line called MDAY-D2 has previously been shown to attach to fibronectin and type IV collagen, whereas MDAY-D2 and phenotypic revertants of MDW4 attached poorly to these substrates. The increased adhesiveness of the mutant cells appeared to be closely related to a lesion in cell surface carbohydrate structures. In an effort to identify the carbohydrates involved in cell attachment, glycopeptides isolated from mutant and wild-type cells as well as from purified glycoproteins were tested for their ability to inhibit the attachment of MDW4 cells to plastic surfaces coated with fibronectin, laminin, or type IV collagen. The addition of mannose-terminating glycopeptide to the adhesion assay inhibited MDW4 cell attachment to type IV collagen. In contrast, a sialylated poly N-acetyllactosamine-containing glycopeptide, isolated from wheat germ agglutinin-sensitive MDAY-D2 cells but absent in MDW4 cells, inhibited MDW4 attachment to laminin. None of the glycopeptides used in this study inhibited attachment of MDW4 cells to fibronectin-coated plastic. Peptide N-glycosidase treatment of the cells to remove surface asparagine-linked oligosaccharides inhibited MDW4 adhesion to type IV collagen, but not to laminin, and the same treatment of the wheat germ agglutinin-sensitive cells enhanced attachment to laminin. Tumor cell attachment to, and detachment from, the sublaminal matrix protein laminin and type IV collagen are thought to be important events in the metastatic process. Our results indicate that tumor cell attachment to these proteins may be partially modulated by the expression of specific oligosaccharide structures associated with the cell surface.

1995 ◽  
Vol 6 (12) ◽  
pp. 1781-1791 ◽  
Author(s):  
S L Dalton ◽  
E Scharf ◽  
R Briesewitz ◽  
E E Marcantonio ◽  
R K Assoian

The expression of alpha 5 beta 1 integrin on the surface of fibroblasts requires adhesion to substratum. We have examined the basis for this adhesion-dependent surface expression by comparing the life cycle of integrins in parallel cultures of adherent and nonadherent cells. Results of biosynthetic labeling experiments in NRK fibroblasts showed that the synthesis and biosynthetic processing of the beta 1 integrin subunit proceed in the absence of cell attachment; however, when examining the behavior of preexisting cell surface integrins, we observed that the alpha beta 1 integrins are internalized and degraded when adhesion to substratum is blocked. A kinetic analysis of integrin internalization in cycloheximide-treated NRK cells showed that each of the fibroblast integrins we examined (in both the beta 1 and beta 3 families) are lost from the cell surface after detachment from substratum. Thus, the default integrin life cycle in fibroblasts involves continuous synthesis, processing, transport to the cell surface, and internalization/degradation. Interestingly, studies with NIH-3T3 cells expressing alpha 1 beta 1 integrin showed that the loss of cell-surface alpha 5 beta 1 integrin is blocked by adhesion of cells to dishes coated with type IV collagen (a ligand for alpha 1 beta 1 integrin) as well as fibronectin. Similarly, adhesion of these cells to dishes coated with type IV collagen stabilizes the surface expression of alpha 5 beta 1 as well as alpha 1 beta 1 integrin. We propose that the adhesion of fibroblasts to extracellular matrix protein alters the integrin life cycle and permits retention of these proteins at the cell surface where they can play important roles in transmitting adhesion-dependent signals.


1996 ◽  
Vol 7 (3) ◽  
pp. 383-396 ◽  
Author(s):  
J R Knutson ◽  
J Iida ◽  
G B Fields ◽  
J B McCarthy

Tumor cell invasion of basement membranes (BM) represents one of the critical steps in the metastatic process. Tumor cell recognition of individual BM matrix components may involve individual cell adhesion receptors, such as integrins or cell surface proteoglycans, or may involve a coordinate action of both types of receptors. In this study, we have focused on the identification of a cell surface CD44/chondroitin sulfate proteoglycan (CSPG) and alpha 2 beta 1 integrin on human melanoma cells that are both directly involved in the in vitro invasion of reconstituted BM via a type IV collagen-dependent mechanism. Interfering with cell surface expression of human melanoma CSPG with either p-nitro-phenyl-beta-D-xylopyranoside treatment or anti-CD44 monoclonal antibody (mAb) preincubation (mAb) preincubation inhibits melanoma cell invasion through reconstituted BM. These treatments also strongly inhibit melanoma cell migration on type IV collagen, however, they are ineffective at inhibiting cell adhesion to type IV collagen. Purified melanoma cell surface CD44/CSPG, or purified chondroitin sulfate, bind to type IV collagen affinity columns, consistent with a role for CD44/CSPG-type IV collagen interactions in mediating tumor cell invasion. In contrast, melanoma cell migration on laminin (LM) does not involve CD44/CSPG, nor does CD44/CSPG bind to LM, suggesting that CD44/CSPG-type IV collagen interactions are specific in nature. Additionally, anti-alpha 2 and anti-beta 1 integrin mAbs are capable of blocking melanoma cell invasion of reconstituted BM. Both of these anti-integrin mAbs inhibit melanoma cell adhesion and migration on type IV collagen, whereas only anti-beta 1 mAb inhibits cell adhesion to LM. Collectively, these results indicate that melanoma cell adhesion to type IV collagen is an important consideration in invasion of reconstituted BM in vitro, and suggest that CD44/CSPG and alpha 2 beta 1 integrin may collaborate to promote human melanoma cell adhesion, migration, and invasion in vivo.


1984 ◽  
Vol 259 (9) ◽  
pp. 5915-5922 ◽  
Author(s):  
M Kurkinen ◽  
A Taylor ◽  
J I Garrels ◽  
B L Hogan

1982 ◽  
Vol 257 (16) ◽  
pp. 9740-9744 ◽  
Author(s):  
C N Rao ◽  
I M Margulies ◽  
T S Tralka ◽  
V P Terranova ◽  
J A Madri ◽  
...  

1991 ◽  
Vol 113 (6) ◽  
pp. 1475-1483 ◽  
Author(s):  
P Vandenberg ◽  
A Kern ◽  
A Ries ◽  
L Luckenbill-Edds ◽  
K Mann ◽  
...  

The aim of this investigation was to identify the domains of type IV collagen participating in cell binding and the cell surface receptor involved. A major cell binding site was found in the trimeric cyanogen bromide-derived fragment CB3, located 100 nm away from the NH2 terminus of the molecule, in which the triple-helical conformation is stabilized by interchain disulfide bridges. Cell attachment assays with type IV collagen and CB3 revealed comparable cell binding activities. Antibodies against CB3 inhibited attachment on fragment CB3 completely and on type IV collagen to 80%. The ability to bind cells was strictly conformation dependent. Four trypsin derived fragments of CB3 allowed a closer investigation of the binding site. The smallest, fully active triple-helical fragment was (150)3-amino acid residues long. It contained segments of 27 and 37 residues, respectively, at the NH2 and COOH terminus, which proved to be essential for cell binding. By affinity chromatography on Sepharose-immobilized CB3, two receptor molecules of the integrin family, alpha 1 beta 1 and alpha 2 beta 1, were isolated. Their subunits were identified by sequencing the NH2 termini or by immunoblotting. The availability of fragment CB3 will allow for a more in-depth study of the molecular interaction of a short, well defined triple-helical ligand with collagen receptors alpha 1 beta 1 and alpha 2 beta 1.


1994 ◽  
Vol 107 (10) ◽  
pp. 2739-2748 ◽  
Author(s):  
M. Hara ◽  
M. Yaar ◽  
A. Tang ◽  
M.S. Eller ◽  
W. Reenstra ◽  
...  

Integrins are a family of proteins known to mediate attachment of cells to extracellular matrix materials. The substratum specificity and cation dependence of specific integrin heterodimers have been extensively characterized, and to a lesser degree specialized roles in cell attachment versus dendricity have been defined in some cell types. In the past decade, melanocyte attachment rate and morphology have been found to have strong substratum dependence, suggesting a major role for integrins in these processes. In order to investigate this aspect of pigment cell biology, human newborn melanocytes were subjected to flow cytometry analysis and plated on a variety of substrata under conditions known to promote or block the binding of specific integrin pairs. Melanocyte attachment to laminin and type IV collagen was promoted by Mg2+ and Mn2+ but not by Ca2+, in the range of concentrations examined. However, dendrite outgrowth from melanocytes already attached on laminin or type IV collagen was promoted by Ca2+ to a far greater degree than by Mg2+, and Mn2+ had no effect on dendrite outgrowth. Flow cytometry analysis revealed that melanocytes expressed beta 1, alpha 2, alpha 3, alpha 5, alpha 6 and alpha v integrin subunits as well as the alpha v beta 3 heterodimer. The influence of substratum on the profile of integrin expression was minimal, but alpha 6 and beta 1 integrins were observed by confocal microscopy to be expressed over the entire cell surface, while alpha 2, alpha 5 and alpha v beta 3 integrins localized along dendritic processes or at their tips. In accordance with the implications of these distribution patterns, anti-beta 1 and anti-alpha 6 integrin monoclonal antibodies blocked melanocyte attachment to laminin, while anti-alpha 2, anti-alpha 5 and anti-alpha v beta 3 inhibited dendrite outgrowth but did not block substratum attachment on either laminin or type IV collagen. On the basis of these data and the known characteristics of integrin molecules, we conclude that melanocyte attachment to laminin is mediated primarily by alpha 6 beta 1 integrin in a Ca(2+)-independent, Mg(2+)- and/or Mn(2+)-dependent manner, while dendrite outgrowth on laminin and type IV collagen requires extracellular Ca2+ and is mediated by alpha v beta 3 as well as alpha 2 and alpha 5 integrins.


Development ◽  
1991 ◽  
Vol 113 (1) ◽  
pp. 151-164 ◽  
Author(s):  
F.G. Rathjen ◽  
J.M. Wolff ◽  
R. Chiquet-Ehrismann

We report here the characterization of restrictin, a novel chick neural extracellular matrix glycoprotein associated with the cell recognition molecule F11. Immunoaffinity chromatography using monoclonal antibody 23–13 directed to restrictin yield a major relative molecular mass band at 170 × 10(3) and minor bands at 160, 180, 250 and 320 × 10(3) which are immunologically related to each other. Neural cells attach on immobilized restrictin in a short-term adhesion assay. This adhesion can be blocked specifically by monoclonal or polyclonal antibodies to restrictin but not by antibodies to F11 or by the peptide GRGDSP. Antibodies to restrictin do not interfere with the fasciculation of retinal axons and the isolated restrictin does not stimulate the outgrowth of axons. In the developing nervous system, restrictin is localized in very restricted regions and is found within areas of F11 expression. The timing and pattern of expression of restrictin and its cell attachment activity suggest that it participates in developmental events of the nervous system.


BMC Medicine ◽  
2008 ◽  
Vol 6 (1) ◽  
Author(s):  
M Khair Elzarrad ◽  
Abu Haroon ◽  
Klaus Willecke ◽  
Radoslaw Dobrowolski ◽  
Mark N Gillespie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document