scholarly journals The Role of Topoisomerase II in Meiotic Chromosome Condensation and Segregation in Schizosaccharomyces pombe

1998 ◽  
Vol 9 (10) ◽  
pp. 2739-2750 ◽  
Author(s):  
Edgar Hartsuiker ◽  
Jürg Bähler ◽  
Jürg Kohli

Topoisomerase II is able to break and rejoin double-strand DNA. It controls the topological state and forms and resolves knots and catenanes. Not much is known about the relation between the chromosome segregation and condensation defects as found in yeasttop2 mutants and the role of topoisomerase II in meiosis. We studied meiosis in a heat-sensitive top2mutant of Schizosaccharomyces pombe. Topoisomerase II is not required until shortly before meiosis I. The enzyme is necessary for condensation shortly before the first meiotic division but not for early meiotic prophase condensation. DNA replication, prophase morphology, and dynamics of the linear elements are normal in thetop2 mutant. The top2 cells are not able to perform meiosis I. Arrested cells have four spindle pole bodies and two spindles but only one nucleus, suggesting that the arrest is nonregulatory. Finally, we show that the arrest is partly solved in atop2 rec7 double mutant, indicating that topoisomerase II functions in the segregation of recombined chromosomes. We suggest that the inability to decatenate the replicated DNA is the primary defect in top2. This leads to a loss of chromatin condensation shortly before meiosis I, failure of sister chromatid separation, and a nonregulatory arrest.

1997 ◽  
Vol 110 (6) ◽  
pp. 721-730 ◽  
Author(s):  
M.R. Esteban ◽  
M.C. Campos ◽  
A.L. Perondini ◽  
C. Goday

Spindle formation and chromosome elimination during male meiosis in Sciara ocellaris (Diptera, Sciaridae) has been studied by immunofluorescence techniques. During meiosis I a monopolar spindle is formed from a single polar complex (centrosome-like structure). This single centrosomal structure persists during meiosis II and is responsible for the non-disjunction of the maternal X chromatids. During meiosis I and II non-spindle microtubules are assembled in the cytoplasmic bud regions of the spermatocytes. The chromosomes undergoing elimination during both meiotic divisions are segregated to the bud region where they associate with bundles of microtubules. The presence and distribution of centrosomal antigens in S. ocellaris meiotic spindles and bud regions has been investigated using different antibodies. gamma-Tubulin and centrin are present in the bud as well as in the single polar complex of first meiotic spindle. The results suggest that spermatocyte bud regions contain microtubule-organizing centres (MTOCs) that nucleate cytoplasmic microtubules that are involved in capturing chromosomes in the bud regions. The distribution of actin and myosin in the spermatocytes during meiosis is also reported.


1999 ◽  
Vol 145 (5) ◽  
pp. 979-991 ◽  
Author(s):  
Roberta Fraschini ◽  
Elisa Formenti ◽  
Giovanna Lucchini ◽  
Simonetta Piatti

The mitotic checkpoint blocks cell cycle progression before anaphase in case of mistakes in the alignment of chromosomes on the mitotic spindle. In budding yeast, the Mad1, 2, 3, and Bub1, 2, 3 proteins mediate this arrest. Vertebrate homologues of Mad1, 2, 3, and Bub1, 3 bind to unattached kinetochores and prevent progression through mitosis by inhibiting Cdc20/APC-mediated proteolysis of anaphase inhibitors, like Pds1 and B-type cyclins. We investigated the role of Bub2 in budding yeast mitotic checkpoint. The following observations indicate that Bub2 and Mad1, 2 probably activate the checkpoint via different pathways: (a) unlike the other Mad and Bub proteins, Bub2 localizes at the spindle pole body (SPB) throughout the cell cycle; (b) the effect of concomitant lack of Mad1 or Mad2 and Bub2 is additive, since nocodazole-treated mad1 bub2 and mad2 bub2 double mutants rereplicate DNA more rapidly and efficiently than either single mutant; (c) cell cycle progression of bub2 cells in the presence of nocodazole requires the Cdc26 APC subunit, which, conversely, is not required for mad2 cells in the same conditions. Altogether, our data suggest that activation of the mitotic checkpoint blocks progression through mitosis by independent and partially redundant mechanisms.


1979 ◽  
Vol 57 (18) ◽  
pp. 1860-1872 ◽  
Author(s):  
Diane Cope Peabody ◽  
Jerome J. Motta

Meiosis I in isolates of Armillaria mellea in which subhymenial hyphae are uninucleate and lack clamp connections was examined ultrastructurally. Although the overall pattern of development and basidiosporogenesis appears similar to other Homobasidiomycetes it was observed that spindle pole bodies are predominantly monoglobular and are associated with a unique membrane structure of the subtending nuclear envelope. The nuclear envelope also disappears at metaphase I and reforms by the coalescence of membrane fragments around the compacted chromatin at late telophase I. The significance of these features in relation to other Basidiomycetes is briefly discussed.


1986 ◽  
Vol 80 (1) ◽  
pp. 253-268
Author(s):  
K. Tanaka ◽  
T. Kanbe

Nuclear division in Schizosaccharomyces pombe has been studied in transmission electron micrographs of sections of cells fixed by a method of freeze-substitution. We have found cytoplasmic microtubules in the vicinity of the spindle pole bodies and two kinds of microtubules, short discontinuous ones and long, parallel ones in the intranuclear mitotic spindle. For most of the time taken by nuclear division the spindle pole bodies face each other squarely across the nuclear space but early in mitosis they briefly appear twisted out of alignment with each other, thereby imparting a sigmoidal shape to the bundle of spindle microtubules extending between them. This configuration is interpreted as indicating active participation of the spindle in the initial elongation of the dividing nucleus. It is proposed that mitosis is accompanied by the shortening of chromosomal microtubules simultaneously with the elongation of the central pole-to-pole bundle of microtubules of the intranuclear spindle. Daughter nuclei are separated by the sliding apart of interdigitating microtubules of the spindle at telophase. Some of the latter bear dense knobs at their ends.


2019 ◽  
Vol 47 (13) ◽  
pp. 6946-6955 ◽  
Author(s):  
Antonio Valdés ◽  
Lucia Coronel ◽  
Belén Martínez-García ◽  
Joana Segura ◽  
Sílvia Dyson ◽  
...  

AbstractRecent studies have revealed that the DNA cross-inversion mechanism of topoisomerase II (topo II) not only removes DNA supercoils and DNA replication intertwines, but also produces small amounts of DNA knots within the clusters of nucleosomes that conform to eukaryotic chromatin. Here, we examine how transcriptional supercoiling of intracellular DNA affects the occurrence of these knots. We show that although (−) supercoiling does not change the basal DNA knotting probability, (+) supercoiling of DNA generated in front of the transcribing complexes increases DNA knot formation over 25-fold. The increase of topo II-mediated DNA knotting occurs both upon accumulation of (+) supercoiling in topoisomerase-deficient cells and during normal transcriptional supercoiling of DNA in TOP1 TOP2 cells. We also show that the high knotting probability (Pkn ≥ 0.5) of (+) supercoiled DNA reflects a 5-fold volume compaction of the nucleosomal fibers in vivo. Our findings indicate that topo II-mediated DNA knotting could be inherent to transcriptional supercoiling of DNA and other chromatin condensation processes and establish, therefore, a new crucial role of topoisomerase II in resetting the knotting–unknotting homeostasis of DNA during chromatin dynamics.


1993 ◽  
Vol 13 (6) ◽  
pp. 3445-3455 ◽  
Author(s):  
D Rose ◽  
C Holm

Although the processes of mitosis and meiosis are similar, there is evidence for fundamental regulatory differences between the two. To examine these differences, we have compared the meiotic phenotype of DNA topoisomerase II mutants with their previously described mitotic phenotype (C. Holm, T. Goto, J. Wang, and D. Botstein, Cell 41:553-563, 1985). top2 mutants in meiosis show no defects in the latest detectable stages of recombination, yet they arrest prior to spindle establishment at meiosis I. Fluorescence and electron microscopy reveal that top2 mutants exhibit wild-type levels of meiotic chromosome condensation and form morphologically normal synaptonemal complex but are delayed in the exit from pachytene. Arrested cells retain viability and form colonies if transferred to mitotic medium. Our results suggest that the top2 meiotic arrest is regulatory in nature. This arrest may have evolved to ensure the resolution of fortuitous tangles between nonhomologous chromosomes.


2003 ◽  
Vol 23 (14) ◽  
pp. 5018-5030 ◽  
Author(s):  
Allison J. Bardin ◽  
Monica G. Boselli ◽  
Angelika Amon

ABSTRACT The mitotic exit network (MEN), a Ras-like signaling cascade, promotes the release of the protein phosphatase Cdc14 from the nucleolus and is essential for cells to exit from mitosis in Saccharomyces cerevisiae. We have characterized the functional domains of one of the MEN components, the protein kinase Cdc15, and investigated the role of these domains in mitotic exit. We show that a region adjacent to Cdc15's kinase domain is required for self-association and for binding to spindle pole bodies and that this domain is essential for CDC15 function. Furthermore, we find that overexpression of CDC15 lacking the C-terminal 224 amino acids results in hyperactivation of MEN and premature release of Cdc14 from the nucleolus, suggesting that this domain within Cdc15 functions to inhibit MEN signaling. Our findings indicate that multiple modes of MEN regulation occur through the protein kinase Cdc15.


Genetics ◽  
1980 ◽  
Vol 96 (2) ◽  
pp. 379-398
Author(s):  
A M DeLange ◽  
A J F Griffiths

ABSTRACT Three recessive meiotic mutants, asc(DL95), asc(DL243) and asc(DL879), were detected by the abortion of many of their ascospores and were analyzed using both cytological and genetic methods. Even though asc(DL95), asc(DL243) and the previously studied meiotic mutant, mei-1 (Smith 1975; Lu and Galeazzi 1978), complement one another in crosses, they apparently do not recombine (DeLange and Griffiths 1980). Thus, they may represent alleles of the same gene or comprise a gene cluster. Ascospore abortion in these mutants is caused by abnormal disjunction of meiotic chromosomes. In crosses homozygous for asc(DL95), asc(DL879) or mei-1, both pairing of homologs and meiotic recombination frequencies are reduced. In each case, this primary defect is followed by the formation of univalents at metaphase I and their irregular segregation. The mutant asc(DL243) has a defect in ascus formation, and later in disjunction during the second meiotic and post-meiotic divisions. The first-acting defect before or during karyogamy results in the abortion of most cells. Some cells manage to proceed past this block. During the second meiotic division, most chromosomes of the few resulting asci are attached to only one of the two spindle-pole bodies. Disjunction at the postmeiotic division is also highly irregular. This mutant appears to be defective in the attachment of one spindle-pole body to a set of chromosomes. The defect may involve either a centromere-associated product or a spindle-pole body.


2018 ◽  
Author(s):  
Luciana Previato de Almeida ◽  
Jared M. Evatt ◽  
Hoa H. Chuong ◽  
Emily L. Kurdzo ◽  
Craig A. Eyster ◽  
...  

ABSTRACTFaithful chromosome segregation during meiosis I depends upon the formation of connections between homologous chromosomes. Crossovers between homologs connect the partners allowing them to attach to the meiotic spindle as a unit, such that they migrate away from one another at anaphase I. Homologous partners also become connected by pairing of their centromeres in meiotic prophase. This centromere pairing can promote proper segregation at anaphase I of partners that have failed to become joined by a crossover. Centromere pairing is mediated by synaptonemal complex (SC) proteins that persist at the centromere when the SC disassembles. Here, using mouse spermatocyte and yeast model systems, we tested the role of shugoshin in promoting meiotic centromere pairing by protecting centromeric synaptonemal components from disassembly. The results show that shugoshin protects centromeric SC in meiotic prophase and, in anaphase, promotes the proper segregation of partner chromosomes that are not linked by a crossover.SIGNIFICANCEMeiotic crossovers form a connection between homologous chromosomes that allows them to attach to the spindle as a single unit in meiosis I. In humans, failures in this process are a leading cause of aneuploidy. A recently described process, called centromere pairing, can also help connect meiotic chromosome partners in meiosis. Homologous chromosomes become tightly joined by a structure called the synaptonemal complex (SC) in meiotic prophase. After the SC disassembles, persisting SC proteins at the centromeres mediate their pairing. Here, studies in mouse spermatocytes and yeast are used to show that the shugoshin protein helps SC components persist at centromeres and helps centromere pairing promote the proper segregation of yeast chromosomes that fail to become tethered by crossovers.


2012 ◽  
Vol 23 (16) ◽  
pp. 3122-3132 ◽  
Author(s):  
Michelle A. Attner ◽  
Angelika Amon

The mitotic exit network (MEN) is an essential GTPase signaling pathway that triggers exit from mitosis in budding yeast. We show here that during meiosis, the MEN is dispensable for exit from meiosis I but contributes to the timely exit from meiosis II. Consistent with a role for the MEN during meiosis II, we find that the signaling pathway is active only during meiosis II. Our analysis further shows that MEN signaling is modulated during meiosis in several key ways. Whereas binding of MEN components to spindle pole bodies (SPBs) is necessary for MEN signaling during mitosis, during meiosis MEN signaling occurs off SPBs and does not require the SPB recruitment factor Nud1. Furthermore, unlike during mitosis, MEN signaling is controlled through the regulated interaction between the MEN kinase Dbf20 and its activating subunit Mob1. Our data lead to the conclusion that a pathway essential for vegetative growth is largely dispensable for the specialized meiotic divisions and provide insights into how cell cycle regulatory pathways are modulated to accommodate different modes of cell division.


Sign in / Sign up

Export Citation Format

Share Document