scholarly journals Synchronization of Interphase Events Depends neither on Mitosis nor on cdk1

2003 ◽  
Vol 14 (9) ◽  
pp. 3730-3740 ◽  
Author(s):  
Ayelet Laronne ◽  
Shay Rotkopf ◽  
Asaf Hellman ◽  
Yosef Gruenbaum ◽  
Andrew C.G. Porter ◽  
...  

Human HT2-19 cells with a conditional cdk1 mutation stop dividing upon cdk1 inactivation and undergo multiple rounds of endoreplication. We show herein that major cell cycle events remain synchronized in these endoreplicating cells. DNA replication alternates with gap phases and cell cycle-specific cyclin E expression is maintained. Centrosomes duplicate in synchrony with chromosome replication, giving rise to polyploid cells with multiple centrosomes. Centrosome migration, a typical prophase event, also takes place in endoreplicating cells. The timing of these events is unaffected by cdk1 inactivation compared with normally dividing cells. Nuclear lamina breakdown, in contrast, previously shown to be dependent on cdk1, does not take place in endoreplicating HT2-19 cells. Moreover, breakdown of all other major components of the nuclear lamina, like the inner nuclear membrane proteins and nuclear pore complexes, seems also to depend on cdk1. Interestingly, the APC/C ubiquitin ligase is activated in these endoreplicating cells by fzr but not by fzy. The oscillations of interphase events are thus independent of cdk1 and of mitosis but may depend on APC/Cfzr activity.

2019 ◽  
Vol 63 (8-9-10) ◽  
pp. 509-519 ◽  
Author(s):  
Petros Batsios ◽  
Ralph Gräf ◽  
Michael P. Koonce ◽  
Denis A. Larochelle ◽  
Irene Meyer

The nuclear envelope consists of the outer and the inner nuclear membrane, the nuclear lamina and the nuclear pore complexes, which regulate nuclear import and export. The major constituent of the nuclear lamina of Dictyostelium is the lamin NE81. It can form filaments like B-type lamins and it interacts with Sun1, as well as with the LEM/HeH-family protein Src1. Sun1 and Src1 are nuclear envelope transmembrane proteins involved in the centrosome-nucleus connection and nuclear envelope stability at the nucleolar regions, respectively. In conjunction with a KASH-domain protein, Sun1 usually forms a so-called LINC complex. Two proteins with functions reminiscent of KASH-domain proteins at the outer nuclear membrane of Dictyostelium are known; interaptin which serves as an actin connector and the kinesin Kif9 which plays a role in the microtubule-centrosome connector. However, both of these lack the conserved KASH-domain. The link of the centrosome to the nuclear envelope is essential for the insertion of the centrosome into the nuclear envelope and the appropriate spindle formation. Moreover, centrosome insertion is involved in permeabilization of the mitotic nucleus, which ensures access of tubulin dimers and spindle assembly factors. Our recent progress in identifying key molecular players at the nuclear envelope of Dictyostelium promises further insights into the mechanisms of nuclear envelope dynamics.


1990 ◽  
Vol 111 (6) ◽  
pp. 2225-2234 ◽  
Author(s):  
L Powell ◽  
B Burke

The movement between nuclei of an integral protein of the inner nuclear membrane has been studied in rat/mouse and rat/hamster heterokaryons. This protein, p55, was found to equilibrate between nuclei over a period of approximately 6 h in the absence of new protein synthesis. When rat/mouse heterokaryons were constructed using an undifferentiated murine embryonal carcinoma (P19), which lacks lamins A and C, no accumulation of p55 in the mouse cell nucleus was observed. However, P19 nuclei could be rendered competent to accumulate p55 by transfecting the parent cells with human lamin A before cell fusion, supporting the notion that p55 may interact with the nuclear lamina. Since p55 does not appear to be able to dissociate from the nuclear membrane, it is concluded that this exchange between nuclei does not occur in the aqueous phase and instead is probably membrane mediated. It is proposed that this protein may be free to move between the inner and outer nuclear membranes via the continuities at the nuclear pore complexes and that transfer between nuclei occurs via lateral diffusion through the peripheral ER, which appears to form a single continuous membrane system in these heterokaryons. One implication of these observations is that accumulation of at least some integral proteins in the inner nuclear membrane may be mediated by interactions with other nuclear components and may not require a single defined targeting sequence.


2011 ◽  
Vol 39 (6) ◽  
pp. 1758-1763 ◽  
Author(s):  
Jose M. González ◽  
Vicente Andrés

The mammalian NE (nuclear envelope), which separates the nucleus from the cytoplasm, is a complex structure composed of nuclear pore complexes, the outer and inner nuclear membranes, the perinuclear space and the nuclear lamina (A- and B-type lamins). The NE is completely disassembled and reassembled at each cell division. In the present paper, we review recent advances in the understanding of the mechanisms implicated in the transport of inner nuclear membrane and nuclear lamina proteins from the endoplasmic reticulum to the nucleus in interphase cells and mitosis, with special attention to A-type lamins.


2011 ◽  
Vol 194 (1) ◽  
pp. 27-37 ◽  
Author(s):  
Jessica A. Talamas ◽  
Martin W. Hetzer

Nuclear pore complexes (NPCs) assemble at the end of mitosis during nuclear envelope (NE) reformation and into an intact NE as cells progress through interphase. Although recent studies have shown that NPC formation occurs by two different molecular mechanisms at two distinct cell cycle stages, little is known about the molecular players that mediate the fusion of the outer and inner nuclear membranes to form pores. In this paper, we provide evidence that the transmembrane nucleoporin (Nup), POM121, but not the Nup107–160 complex, is present at new pore assembly sites at a time that coincides with inner nuclear membrane (INM) and outer nuclear membrane (ONM) fusion. Overexpression of POM121 resulted in juxtaposition of the INM and ONM. Additionally, Sun1, an INM protein that is known to interact with the cytoskeleton, was specifically required for interphase assembly and localized with POM121 at forming pores. We propose a model in which POM121 and Sun1 interact transiently to promote early steps of interphase NPC assembly.


2014 ◽  
Vol 395 (5) ◽  
pp. 515-528 ◽  
Author(s):  
Benjamin Vollmer ◽  
Wolfram Antonin

Abstract Nuclear pore complexes mediate the transport between the cell nucleoplasm and cytoplasm. These 125 MDa structures are among the largest assemblies found in eukaryotes, built from proteins organized in distinct subcomplexes that act as building blocks during nuclear pore complex biogenesis. In this review, we focus on one of these subcomplexes, the Nup93 complex in metazoa and its yeast counterpart, the Nic96 complex. We discuss its essential function in nuclear pore complex assembly as a linker between the nuclear membrane and the central part of the pore and its various roles in nuclear transport processes and beyond.


2014 ◽  
Vol 25 (8) ◽  
pp. 1287-1297 ◽  
Author(s):  
Yuxuan Guo ◽  
Youngjo Kim ◽  
Takeshi Shimi ◽  
Robert D. Goldman ◽  
Yixian Zheng

The nuclear lamina (NL) consists of lamin polymers and proteins that bind to the polymers. Disruption of NL proteins such as lamin and emerin leads to developmental defects and human diseases. However, the expression of multiple lamins, including lamin-A/C, lamin-B1, and lamin-B2, in mammals has made it difficult to study the assembly and function of the NL. Consequently, it has been unclear whether different lamins depend on one another for proper NL assembly and which NL functions are shared by all lamins or are specific to one lamin. Using mouse cells deleted of all or different combinations of lamins, we demonstrate that the assembly of each lamin into the NL depends primarily on the lamin concentration present in the nucleus. When expressed at sufficiently high levels, each lamin alone can assemble into an evenly organized NL, which is in turn sufficient to ensure the even distribution of the nuclear pore complexes. By contrast, only lamin-A can ensure the localization of emerin within the NL. Thus, when investigating the role of the NL in development and disease, it is critical to determine the protein levels of relevant lamins and the intricate shared or specific lamin functions in the tissue of interest.


1988 ◽  
Vol 90 (3) ◽  
pp. 409-423 ◽  
Author(s):  
MURRAY STEWART ◽  
SUE WHYTOCK

We have examined the structure of the nuclear envelope of oocytes of Xenopus laevis by electronmicroscopy of metal-shadowed specimens. Material was prepared by either freeze-drying ora rapid protocol using air-drying after dehydration in ethanol followed by amyl acetate. These methods emphasized different aspects of the structure and enabled an integrated view of the arrangement of nuclear pore complexes, nuclear lamina and pore-connecting fibrils to be assembled. In specimens prepared by either air drying or freeze-drying, the lamina meshwork beneath the nuclear face of the envelope was well preserved, but the fine structure of the nuclearpores was superior in freeze-dried preparations. Both methods also showed pore-connecting fibrils that were clearly not components of the lamina. By using stereo pairs, we established criteria for recognizing the cytoplasmic and nucleoplasmic faces of shadowed nuclear envelopes. These views also enabled us to identify the levels atwhich different fibrous components were attached to the pores. In particular, we were able to visualize the nuclear lamina fibres and poreconnecting fibrils simultaneously and show that they attach to the pore complexes at different levels. We supplemented this work by using arange of treatments to disrupt the nuclear envelopes lightly and gained several insights into this structure as a result. Sometimes pore complexes and their connecting fibrils were stripped from the envelope. This enabled a clearer view of these connections to be obtained without the lamina present. Moreover, in some conditions, the nuclearpore complexes and fibrous lamina began to disintegrate, there by showing some of the morphological components from which they were assembled.


2020 ◽  
Vol 133 (24) ◽  
pp. jcs250688 ◽  
Author(s):  
Matías Capella ◽  
Lucía Martín Caballero ◽  
Boris Pfander ◽  
Sigurd Braun ◽  
Stefan Jentsch

ABSTRACTMisassembled nuclear pore complexes (NPCs) are removed by sealing off the surrounding nuclear envelope (NE), which is conducted by the endosomal sorting complexes required for transport (ESCRT) machinery. Recruitment of ESCRT proteins to the NE is mediated by the interaction between the ESCRT member Chm7 and the inner nuclear membrane protein Heh1, which belongs to the conserved LEM family. Increased ESCRT recruitment results in excessive membrane scission at damage sites but its regulation remains poorly understood. Here, we show that Hub1-mediated alternative splicing of HEH1 pre-mRNA, resulting in production of its shorter form Heh1-S, is critical for the integrity of the NE in Saccharomyces cerevisiae. ESCRT-III mutants lacking Hub1 or Heh1-S display severe growth defects and accumulate improperly assembled NPCs. This depends on the interaction of Chm7 with the conserved MSC domain, which is only present in the longer variant Heh1-L. Heh1 variants assemble into heterodimers, and we demonstrate that a unique splice segment in Heh1-S suppresses growth defects associated with the uncontrolled interaction between Heh1-L and Chm7. Together, our findings reveal that Hub1-mediated splicing generates Heh1-S to regulate ESCRT recruitment to the NE.This article has an associated First Person interview with the first author of the paper.


2001 ◽  
Vol 154 (1) ◽  
pp. 71-84 ◽  
Author(s):  
Nathalie Daigle ◽  
Joël Beaudouin ◽  
Lisa Hartnell ◽  
Gabriela Imreh ◽  
Einar Hallberg ◽  
...  

The nuclear pore complex (NPC) and its relationship to the nuclear envelope (NE) was characterized in living cells using POM121–green fluorescent protein (GFP) and GFP-Nup153, and GFP–lamin B1. No independent movement of single pore complexes was found within the plane of the NE in interphase. Only large arrays of NPCs moved slowly and synchronously during global changes in nuclear shape, strongly suggesting mechanical connections which form an NPC network. The nuclear lamina exhibited identical movements. NPC turnover measured by fluorescence recovery after photobleaching of POM121 was less than once per cell cycle. Nup153 association with NPCs was dynamic and turnover of this nucleoporin was three orders of magnitude faster. Overexpression of both nucleoporins induced the formation of annulate lamellae (AL) in the endoplasmic reticulum (ER). Turnover of AL pore complexes was much higher than in the NE (once every 2.5 min). During mitosis, POM121 and Nup153 were completely dispersed and mobile in the ER (POM121) or cytosol (Nup153) in metaphase, and rapidly redistributed to an immobilized pool around chromatin in late anaphase. Assembly and immobilization of both nucleoporins occurred before detectable recruitment of lamin B1, which is thus unlikely to mediate initiation of NPC assembly at the end of mitosis.


2016 ◽  
Vol 27 (1) ◽  
pp. 35-47 ◽  
Author(s):  
Caterina Giacomini ◽  
Sameehan Mahajani ◽  
Roberta Ruffilli ◽  
Roberto Marotta ◽  
Laura Gasparini

Lamin B1, a key component of the nuclear lamina, plays an important role in brain development and function. A duplication of the human lamin B1 ( LMNB1) gene has been linked to adult-onset autosomal dominant leukodystrophy, and mouse and human loss-of-function mutations in lamin B1 are susceptibility factors for neural tube defects. In the mouse, experimental ablation of endogenous lamin B1 (Lmnb1) severely impairs embryonic corticogenesis. Here we report that in primary mouse cortical neurons, LMNB1 overexpression reduces axonal outgrowth, whereas deficiency of endogenous Lmnb1 results in aberrant dendritic development. In the absence of Lmnb1, both the length and complexity of dendrites are reduced, and their growth is unresponsive to KCl stimulation. This defective dendritic outgrowth stems from impaired ERK signaling. In Lmnb1-null neurons, ERK is correctly phosphorylated, but phospho-ERK fails to translocate to the nucleus, possibly due to delocalization of nuclear pore complexes (NPCs) at the nuclear envelope. Taken together, these data highlight a previously unrecognized role of lamin B1 in dendrite development of mouse cortical neurons through regulation of nuclear shuttling of specific signaling molecules and NPC distribution.


Sign in / Sign up

Export Citation Format

Share Document