scholarly journals Actin Depolymerization Transduces the Strength of B-Cell Receptor Stimulation

2005 ◽  
Vol 16 (5) ◽  
pp. 2275-2284 ◽  
Author(s):  
Shengli Hao ◽  
Avery August

Polymerization of the actin cytoskeleton has been found to be essential for B-cell activation. We show here, however, that stimulation of BCR induces a rapid global actin depolymerization in a BCR signal strength-dependent manner, followed by polarized actin repolymerization. Depolymerization of actin enhances and blocking actin depolymerization inhibits BCR signaling, leading to altered BCR and lipid raft clustering, ERK activation, and transcription factor activation. Furthermore actin depolymerization by itself induces altered lipid raft clustering and ERK activation, suggesting that F-actin may play a role in separating lipid rafts and in setting the threshold for cellular activation.

2015 ◽  
Vol 211 (6) ◽  
pp. 1193-1205 ◽  
Author(s):  
Heather Miller ◽  
Thiago Castro-Gomes ◽  
Matthias Corrotte ◽  
Christina Tam ◽  
Timothy K. Maugel ◽  
...  

Cells rapidly repair plasma membrane (PM) damage by a process requiring Ca2+-dependent lysosome exocytosis. Acid sphingomyelinase (ASM) released from lysosomes induces endocytosis of injured membrane through caveolae, membrane invaginations from lipid rafts. How B lymphocytes, lacking any known form of caveolin, repair membrane injury is unknown. Here we show that B lymphocytes repair PM wounds in a Ca2+-dependent manner. Wounding induces lysosome exocytosis and endocytosis of dextran and the raft-binding cholera toxin subunit B (CTB). Resealing is reduced by ASM inhibitors and ASM deficiency and enhanced or restored by extracellular exposure to sphingomyelinase. B cell activation via B cell receptors (BCRs), a process requiring lipid rafts, interferes with PM repair. Conversely, wounding inhibits BCR signaling and internalization by disrupting BCR–lipid raft coclustering and by inducing the endocytosis of raft-bound CTB separately from BCR into tubular invaginations. Thus, PM repair and B cell activation interfere with one another because of competition for lipid rafts, revealing how frequent membrane injury and repair can impair B lymphocyte–mediated immune responses.


2020 ◽  
Author(s):  
Luqman O Awoniyi ◽  
Vid Šuštar ◽  
Sara Hernández-Pérez ◽  
Marika Vainio ◽  
Alexey V Sarapulov ◽  
...  

ABSTRACTB lymphocytes form a central part of the adaptive immune system, helping to clear infections by mounting antibody responses and immunological memory. B cell activation is critically controlled by a specific antigen receptor, the B cell receptor (BCR), which triggers a complex, multibranched signaling cascade initiating various cellular changes. While parts of these pathways are reasonably well characterized, we still lack a comprehensive protein-level view of the very dynamic and robust cellular response triggered by antigen engagement. Ability to track, with sufficient kinetic resolution, the protein machineries responding to BCR signaling is imperative to provide new understanding into this complex cell activation event. We address this challenge by using APEX2 proximity labeling technique, that allows capture a major fraction of proteins in a given location with 20nm range and 1min time window, and target the APEX2 enzyme to the plasma membrane lipid raft domain, where BCR efficiently translocates upon activation. Our data provides unprecedented insights into the protein composition of lipid raft environment in B cells, and the changes triggered there upon BCR cross-linking and translocation. In total, we identified 1677 proteins locating at the vicinity of lipid raft domains in cultured mouse B cells. The data includes a majority of proteins known to be involved in proximal BCR signaling. Interestingly, our differential enrichment analysis identified various proteins that underwent dynamic changes in their localization but that had no previously known linkage to early B cell activation. As expected, we also identified, for example, a wealth of proteins linked to clathrin-mediated endocytosis that were recruited to the lipid rafts upon cell activation. We believe that his data serves as a valuable record of proteins involved in BCR activation response and aid various future studies in the field.


PLoS ONE ◽  
2013 ◽  
Vol 8 (1) ◽  
pp. e53564 ◽  
Author(s):  
Weixia Li ◽  
Meng Zhou ◽  
Hongyan Ren ◽  
Hong-Ming Hu ◽  
Liwei Lu ◽  
...  

2007 ◽  
Vol 179 (11) ◽  
pp. 7397-7405 ◽  
Author(s):  
Liliana Busconi ◽  
Jason W. Bauer ◽  
Joseph R. Tumang ◽  
Amy Laws ◽  
Kristin Perkins-Mesires ◽  
...  

Blood ◽  
2008 ◽  
Vol 111 (6) ◽  
pp. 3266-3275 ◽  
Author(s):  
Hong Xu ◽  
Jun Yan ◽  
Yiming Huang ◽  
Paula M. Chilton ◽  
Chuanlin Ding ◽  
...  

Abstract Sensitization is a critical unresolved challenge in transplantation. We show for the first time that blockade of CD154 alone or combined with T-cell depletion prevents sensitization. Allogeneic skin grafts were rejected by recipients treated with anti-αβ T-cell receptor (TCR), anti-CD154, anti-OX40L, or anti–inducible costimulatory pathway (ICOS) mAb alone with a kinetic similar to untreated recipients. However, the production of anti–donor MHC antibody was prevented in mice treated with anti-CD154 mAb only, suggesting a specific role for the CD154-CD40 pathway in B-cell activation. The impairment of T cell–dependent B-cell responses by blocking CD154 occurs through inhibiting activation of T and B cells and secretion of IFN-γ and IL-10. Combined treatment with both anti-CD154 and anti–αβ TCR abrogated antidonor antibody production and resulted in prolonged skin graft survival, suggesting the induction of both T- and B-cell tolerance with prevention of allogeneic sensitization. In addition, we show that the tolerance induced by combined treatment was nondeletional. Moreover, these sensitization-preventive strategies promote bone marrow engraftment in recipients previously exposed to donor alloantigen. These findings may be clinically relevant to prevent allosensitization with minimal toxicity and point to humoral immunity as playing a dominant role in alloreactivity in sensitized recipients.


2017 ◽  
Vol 114 (44) ◽  
pp. E9328-E9337 ◽  
Author(s):  
Dan Su ◽  
Stijn Vanhee ◽  
Rebeca Soria ◽  
Elin Jaensson Gyllenbäck ◽  
Linda M. Starnes ◽  
...  

B cell receptor signaling and downstream NF-κB activity are crucial for the maturation and functionality of all major B cell subsets, yet the molecular players in these signaling events are not fully understood. Here we use several genetically modified mouse models to demonstrate that expression of the multifunctional BRCT (BRCA1 C-terminal) domain-containing PTIP (Pax transactivation domain-interacting protein) chromatin regulator is controlled by B cell activation and potentiates steady-state and postimmune antibody production in vivo. By examining the effects of PTIP deficiency in mice at various ages during ontogeny, we demonstrate that PTIP promotes bone marrow B cell development as well as the neonatal establishment and subsequent long-term maintenance of self-reactive B-1 B cells. Furthermore, we find that PTIP is required for B cell receptor- and T:B interaction-induced proliferation, differentiation of follicular B cells during germinal center formation, and normal signaling through the classical NF-κB pathway. Together with the previously identified role for PTIP in promoting sterile transcription at the Igh locus, the present results establish PTIP as a licensing factor for humoral immunity that acts at several junctures of B lineage maturation and effector cell differentiation by controlling B cell activation.


2014 ◽  
Vol 211 (2) ◽  
pp. 365-379 ◽  
Author(s):  
Ana M. Avalos ◽  
Angelina M. Bilate ◽  
Martin D. Witte ◽  
Albert K. Tai ◽  
Jiang He ◽  
...  

Valency requirements for B cell activation upon antigen encounter are poorly understood. OB1 transnuclear B cells express an IgG1 B cell receptor (BCR) specific for ovalbumin (OVA), the epitope of which can be mimicked using short synthetic peptides to allow antigen-specific engagement of the BCR. By altering length and valency of epitope-bearing synthetic peptides, we examined the properties of ligands required for optimal OB1 B cell activation. Monovalent engagement of the BCR with an epitope-bearing 17-mer synthetic peptide readily activated OB1 B cells. Dimers of the minimal peptide epitope oriented in an N to N configuration were more stimulatory than their C to C counterparts. Although shorter length correlated with less activation, a monomeric 8-mer peptide epitope behaved as a weak agonist that blocked responses to cell-bound peptide antigen, a blockade which could not be reversed by CD40 ligation. The 8-mer not only delivered a suboptimal signal, which blocked subsequent responses to OVA, anti-IgG, and anti-kappa, but also competed for binding with OVA. Our results show that fine-tuning of BCR-ligand recognition can lead to B cell nonresponsiveness, activation, or inhibition.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2578-2578
Author(s):  
Mrinmoy Sanyal ◽  
Rosemary Fernandez ◽  
Shoshana Levy

Abstract CD81 is a component of the CD19/CD21 coreceptor complex in B cells. This tetraspanin molecule was previously shown to enable membrane reorganization in B cells responding to complement-bound antigens. Here we stimulated B cells via their B cell receptor (BCR) and demonstrate that Cd81−/− B cells fluxed higher intracellular free calcium ion along with increased phosphorylation of PLCγ2 and Syk. The stimulated Cd81−/− B cells also proliferated faster and secreted higher amounts of antibodies. Moreover, activation of the TLR4 pathway in Cd81−/− B cells induced increased proliferation and antibody secretion. Furthermore, Cd81−/− mice mounted a significantly higher immune response to T-cell independent antigens than their wildtype counterparts. Finally, analysis of Cd81−/− B cells that were generated by bone marrow transplantation into Rag1−/− mice confirmed a cell intrinsic hyperactive phenotype. Taken together, these results indicate that CD81 plays a negative role in B cell activation in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document