scholarly journals Quantitative Characterization of a Mitotic Cyclin Threshold Regulating Exit from Mitosis

2005 ◽  
Vol 16 (5) ◽  
pp. 2129-2138 ◽  
Author(s):  
Frederick R. Cross ◽  
Lea Schroeder ◽  
Martin Kruse ◽  
Katherine C. Chen

Regulation of cyclin abundance is central to eukaryotic cell cycle control. Strong overexpression of mitotic cyclins is known to lock the system in mitosis, but the quantitative behavior of the control system as this threshold is approached has only been characterized in the in vitro Xenopus extract system. Here, we quantitate the threshold for mitotic block in budding yeast caused by constitutive overexpression of the mitotic cyclin Clb2. Near this threshold, the system displays marked loss of robustness, in that loss or even heterozygosity for some regulators becomes deleterious or lethal, even though complete loss of these regulators is tolerated at normal cyclin expression levels. Recently, we presented a quantitative kinetic model of the budding yeast cell cycle. Here, we use this model to generate biochemical predictions for Clb2 levels, asynchronous as well as through the cell cycle, as the Clb2 overexpression threshold is approached. The model predictions compare well with biochemical data, even though no data of this type were available during model generation. The loss of robustness of the Clb2 overexpressing system is also predicted by the model. These results provide strong confirmation of the model's predictive ability.

2016 ◽  
Vol 27 (14) ◽  
pp. 2198-2212 ◽  
Author(s):  
Sebastian Höckner ◽  
Lea Neumann-Arnold ◽  
Wolfgang Seufert

The antagonism between cyclin-dependent kinases (Cdks) and the ubiquitin ligase APC/C-Cdh1 is central to eukaryotic cell cycle control. APC/C-Cdh1 targets cyclin B and other regulatory proteins for degradation, whereas Cdks disable APC/C-Cdh1 through phosphorylation of the Cdh1 activator protein at multiple sites. Budding yeast Cdh1 carries nine Cdk phosphorylation sites in its N-terminal regulatory domain, most or all of which contribute to inhibition. However, the precise role of individual sites has remained unclear. Here, we report that the Cdk phosphorylation sites of yeast Cdh1 are organized into autonomous subgroups and act through separate mechanisms. Cdk sites 1–3 had no direct effect on the APC/C binding of Cdh1 but inactivated a bipartite nuclear localization sequence (NLS) and thereby controlled the partitioning of Cdh1 between cytoplasm and nucleus. In contrast, Cdk sites 4–9 did not influence the cell cycle–regulated localization of Cdh1 but prevented its binding to the APC/C. Cdk sites 4–9 reside near two recently identified APC/C interaction motifs in a pattern conserved with the human Cdh1 orthologue. Thus a Cdk-inhibited NLS goes along with Cdk-inhibited APC/C binding sites in yeast Cdh1 to relay the negative control by Cdk1 phosphorylation of the ubiquitin ligase APC/C-Cdh1.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3348-3348
Author(s):  
Anna L. Illert ◽  
Florian Bassermann ◽  
Christine von Klitzing ◽  
Petra Seipel ◽  
Stephan W. Morris ◽  
...  

Abstract The regulated oscillation of protein expression is an essential mechanism of cell cycle control. The SCF class of E3 ubiquitin ligases is involved in this process by targeting cell cycle regulatory proteins for degradation by the proteasome, with the F-Box subunit of the SCF specifically recruiting a given substrate to the SCF core. We previously reported the cloning of NIPA (Nuclear Interaction Partner of ALK) in complex with constitutively active oncogenic fusions of ALK, which contributes to the development of lymphomas and sarcomas. Subsequently we characterized NIPA as a F-Box protein (FBP) that defines an oscillating ubiquitin E3 ligase. The SCFNIPA complex targets nuclear cyclin B1 for ubiquitination in interphase while phosphorylation of NIPA in late G2 phase and mitosis inactivates the complex to allow for accumulation of cyclin B1. Here, we identify the region of NIPA that mediates binding to its substrate cyclin B1. In addition to the recently described serine residue 354, we specify 2 new residues, Ser-359 and Ser-395, implicated in the phosphorylation process at G2M within this region. Moreover, we found cyclin B1/Cdk1 to phosphorylate NIPA at Ser-395 in mitosis. Mutation of both Ser-359 and Ser-395 impaired effective inactivation of the SCFNIPA complex, resulting in reduced levels of mitotic cyclin B1. Furthermore, we aimed to identify the kinases involved in the initial phosphorylation of Ser-345. Therefore, we tested a panel of different kinases active at the G2M transition such as GSK3?, Casein kinase 2, PLK-1 and Erk1. Effective in vitro phosphorylation of NIPA could only be demonstrated with Erk-1. Moreover, we demonstrate an interaction of Erk-1 and NIPA at G2M but not in interphase cells. Binding of Erk-1 and NIPA led to phosphorylation at Ser-354 in vivo and could be blocked by the MEK-1/MEK-2 inhibitor PD98059. Together these data suggest a process of sequential phosphorylation where NIPA is initially phosphorylated by Erk-1 leading to the dissociation of NIPA from the SCF core complex. Once Ser-354 is phosphorylated, cyclin B1/CDK1 amplifies phosphorylation of NIPA, thus contributing to the regulation of its own abundance in early mitosis. In ALK positive lymphomas enhanced phosphorylation of NIPA at Ser 354 can be observed. We demonstrate that NPM-ALK leads to the activation of Erk-1, thereby phosphorylating and inactivating the SCFNIPA E3 ligase. Inactivation of SCFNIPA may have an important impact on the cell cycle turnover of lymphoma cells and thus for the pathogenesis of NPM-ALK induced lymphomas.


1998 ◽  
Vol 111 (24) ◽  
pp. 3585-3596 ◽  
Author(s):  
P. Kaldis ◽  
Z.W. Pitluk ◽  
I.A. Bany ◽  
D.A. Enke ◽  
M. Wagner ◽  
...  

Eukaryotic cell cycles are controlled by the activities of cyclin-dependent kinases (cdks). The major cdk in budding yeast, Saccharomyces cerevisiae, is Cdc28p. Activation of Cdc28p requires phosphorylation on threonine 169 and binding to a cyclin. Thr-169 is phosphorylated by the cdk-activating kinase (CAK), Cak1p, which was recently identified as the physiological CAK in budding yeast. Here we present our further characterization of yeast Cak1p. We have found that Cak1p is dispersed throughout the cell as shown by immunofluorescence; biochemical subcellular fractionation confirmed that most of the Cak1p is found in the cytoplasm. Cak1p is a monomeric enzyme in crude yeast lysates. Mutagenesis of potential sites of activating phosphorylation had little effect on the activity of Cak1p in vitro or in vivo. Furthermore, Cak1p contains no posttranslational modifications detectable by two-dimensional isoelectric focusing. We found that Cak1p is a stable protein during exponential growth but that its expression decreases considerably when cells enter stationary phase. In contrast, Cak1p levels oscillate dramatically during meiosis, reflecting regulation at both the transcriptional and post-translational level. The localization and regulation of Cak1p are in contrast to those of the known vertebrate CAK, p40(MO15).


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Matteo Barberis

AbstractNetworks of interacting molecules organize topology, amount, and timing of biological functions. Systems biology concepts required to pin down ‘network motifs’ or ‘design principles’ for time-dependent processes have been developed for the cell division cycle, through integration of predictive computer modeling with quantitative experimentation. A dynamic coordination of sequential waves of cyclin-dependent kinases (cyclin/Cdk) with the transcription factors network offers insights to investigate how incompatible processes are kept separate in time during the eukaryotic cell cycle. Here this coordination is discussed for the Forkhead transcription factors in light of missing gaps in the current knowledge of cell cycle control in budding yeast. An emergent design principle is proposed where cyclin waves are synchronized by a cyclin/Cdk-mediated feed-forward regulation through the Forkhead as a transcriptional timer. This design is rationalized by the bidirectional interaction between mitotic cyclins and the Forkhead transcriptional timer, resulting in an autonomous oscillator that may be instrumental for a well-timed progression throughout the cell cycle. The regulation centered around the cyclin/Cdk–Forkhead axis can be pivotal to timely coordinate cell cycle dynamics, thereby to actuate the quantitative model of Cdk control.


2021 ◽  
Vol 7 (23) ◽  
pp. eabg0007
Author(s):  
Deniz Pirincci Ercan ◽  
Florine Chrétien ◽  
Probir Chakravarty ◽  
Helen R. Flynn ◽  
Ambrosius P. Snijders ◽  
...  

Two models have been put forward for cyclin-dependent kinase (Cdk) control of the cell cycle. In the qualitative model, cell cycle events are ordered by distinct substrate specificities of successive cyclin waves. Alternatively, in the quantitative model, the gradual rise of Cdk activity from G1 phase to mitosis leads to ordered substrate phosphorylation at sequential thresholds. Here, we study the relative contributions of qualitative and quantitative Cdk control in Saccharomyces cerevisiae. All S phase and mitotic cyclins can be replaced by a single mitotic cyclin, albeit at the cost of reduced fitness. A single cyclin can also replace all G1 cyclins to support ordered cell cycle progression, fulfilling key predictions of the quantitative model. However, single-cyclin cells fail to polarize or grow buds and thus cannot survive. Our results suggest that budding yeast has become dependent on G1 cyclin specificity to couple cell cycle progression to essential morphogenetic events.


1990 ◽  
Vol 10 (7) ◽  
pp. 3607-3618
Author(s):  
P Belenguer ◽  
M Caizergues-Ferrer ◽  
J C Labbé ◽  
M Dorée ◽  
F Amalric

Nucleolin is a ubiquitous multifunctional protein involved in preribosome assembly and associated with both nucleolar chromatin in interphase and nucleolar organizer regions on metaphasic chromosomes in mitosis. Extensive nucleolin phosphorylation by a casein kinase (CKII) occurs on serine in growing cells. Here we report that while CKII phosphorylation is achieved in interphase, threonine phosphorylation occurs during mitosis. We provide evidence that this type of in vivo phosphorylation involves a mammalian homolog of the cell cycle control Cdc2 kinase. In vitro M-phase H1 kinase from starfish oocytes phosphorylated threonines in a TPXK motif present nine times in the amino-terminal part of the protein. The same sites which matched the p34cdc2 consensus phosphorylation sequence were used in vivo during mitosis. We propose that successive Cdc2 and CKII phosphorylation could modulate nucleolin function in controlling cell cycle-dependent nucleolar function and organization. Our results, along with previous studies, suggest that while serine phosphorylation is related to nucleolin function in the control of rDNA transcription, threonine phosphorylation is linked to mitotic reorganization of nucleolar chromatin.


1992 ◽  
Vol 20 (2) ◽  
pp. 239-242 ◽  
Author(s):  
Paul Nurse

1993 ◽  
Vol 121 (3) ◽  
pp. 513-519 ◽  
Author(s):  
W Jiang ◽  
J Lechner ◽  
J Carbon

We have cloned and determined the nucleotide sequence of the gene (CBF2) specifying the large (110 kD) subunit of the 240-kD multisubunit yeast centromere binding factor CBF3, which binds selectively in vitro to yeast centromere DNA and contains a minus end-directed microtubule motor activity. The deduced amino acid sequence of CBF2p shows no sequence homologies with known molecular motors, although a consensus nucleotide binding site is present. The CBF2 gene is essential for viability of yeast and is identical to NDC10, in which a conditional mutation leads to a defect in chromosome segregation (Goh, P.-Y., and J. V. Kilmartin, in this issue of The Journal of Cell Biology). The combined in vitro and in vivo evidence indicate that CBF2p is a key component of the budding yeast kinetochore.


2011 ◽  
Vol 8 (61) ◽  
pp. 1128-1141 ◽  
Author(s):  
P. K. Vinod ◽  
Paula Freire ◽  
Ahmed Rattani ◽  
Andrea Ciliberto ◽  
Frank Uhlmann ◽  
...  

The operating principles of complex regulatory networks are best understood with the help of mathematical modelling rather than by intuitive reasoning. Hereby, we study the dynamics of the mitotic exit (ME) control system in budding yeast by further developing the Queralt's model. A comprehensive systems view of the network regulating ME is provided based on classical experiments in the literature. In this picture, Cdc20–APC is a critical node controlling both cyclin (Clb2 and Clb5) and phosphatase (Cdc14) branches of the regulatory network. On the basis of experimental situations ranging from single to quintuple mutants, the kinetic parameters of the network are estimated. Numerical analysis of the model quantifies the dependence of ME control on the proteolytic and non-proteolytic functions of separase. We show that the requirement of the non-proteolytic function of separase for ME depends on cyclin-dependent kinase activity. The model is also used for the systematic analysis of the recently discovered Cdc14 endocycles. The significance of Cdc14 endocycles in eukaryotic cell cycle control is discussed as well.


1992 ◽  
Vol 119 (4) ◽  
pp. 843-854 ◽  
Author(s):  
J A Johnston ◽  
R D Sloboda

A protein of 62 kD is a substrate of a calcium/calmodulin-dependent protein kinase, and both proteins copurify with isolated mitotic apparatuses (Dinsmore, J. H., and R. D. Sloboda. 1988. Cell. 53:769-780). Phosphorylation of the 62-kD protein increases after fertilization; maximum incorporation of phosphate occurs during late metaphase and anaphase and correlates directly with microtubule disassembly as determined by in vitro experiments with isolated mitotic apparatuses. Because 62-kD protein phosphorylation occurs in a pattern similar to the accumulation of the mitotic cyclin proteins, experiments were performed to determine the relationship between cyclin and the 62-kD protein. Continuous labeling of marine embryos with [35S]methionine, as well as immunoblots of marine embryo proteins using specific antibodies, were used to identify both cyclin and the 62-kD protein. These results clearly demonstrate that the 62-kD protein is distinct from cyclin and, unlike cyclin, is a constant member of the cellular protein pool during the first two cell cycles in sea urchin and surf clam embryos. Similar results were obtained using immunofluorescence microscopy of intact eggs and embryos. In addition, immunogold electron microscopy reveals that the 62-kD protein associates with the microtubules of the mitotic apparatus in dividing cells. Interestingly, the protein changes its subcellular distribution with respect to microtubules during the cell cycle. Specifically, during mitosis the 62-kD protein associates with the mitotic apparatus; before nuclear envelope breakdown, however, the 62-kD protein is confined to the nucleus. After anaphase, the 62-kD protein returns to the nucleus, where it resides until nuclear envelope disassembly of the next cell cycle.


Sign in / Sign up

Export Citation Format

Share Document