scholarly journals Uncoupling the Central Spindle-associated Function of the Chromosomal Passenger Complex from Its Role at Centromeres

2006 ◽  
Vol 17 (4) ◽  
pp. 1897-1909 ◽  
Author(s):  
Susanne M.A. Lens ◽  
Jose A. Rodriguez ◽  
Gerben Vader ◽  
Simone W. Span ◽  
Giuseppe Giaccone ◽  
...  

Survivin is a component of the chromosomal passenger complex (CPC) that plays a role in maintenance of an active spindle checkpoint and in cytokinesis. To study whether these different functions can be attributed to distinct domains within the Survivin protein, we complemented Survivin-depleted cells with a variety of point- and deletion-mutants of Survivin. We show that an intact baculovirus IAP repeat (BIR) domain is required for proper spindle checkpoint functioning, but dispensable for cytokinesis. In line with this, mutants lacking an intact BIR domain localized normally to the central spindle, but their localization to inner centromeres was severely perturbed. Consequently, these mutants failed to recruit Aurora B, Borealin/Dasra B, and BubR1 to centromeres and kinetochores, but they had retained the ability to recruit Aurora B and Borealin/Dasra B to the midzone and midbody. Thus, the C terminus of Survivin is sufficient for central spindle localization and execution of cytokinesis, but the additional presence of a functional BIR domain is essential for centromere targeting and spindle checkpoint function. Importantly, our data show that the function of the CPC at the centromere can be separated from its function at the central spindle and that execution of cytokinesis does not require prior concentration of the CPC at centromeres.

2007 ◽  
Vol 18 (5) ◽  
pp. 1657-1669 ◽  
Author(s):  
Vincent Vanoosthuyse ◽  
Sergey Prykhozhij ◽  
Kevin G. Hardwick

Fission yeast has two members of the Shugoshin family, Sgo1 and Sgo2. Although Sgo1 has clearly been established as a protector of centromere cohesion in meiosis I, the roles of Sgo2 remain elusive. Here we show that Sgo2 is required to ensure proper chromosome biorientation upon recovery from a prolonged spindle checkpoint arrest. Consistent with this, Sgo2 is essential for maintaining the Passenger proteins on centromeres upon checkpoint activation. Interestingly, lack of Sgo2 has a more penetrant effect on the localization of Survivin than on the two other Passenger proteins INCENP and Aurora B, and the Survivin-INCENP complex but not the INCENP-Aurora B complex is destabilized in the absence of Sgo2. Finally we show that the conserved C-terminus of Sgo2 is crucial to maintain Sgo2 and Passenger proteins localization on centromeres upon prolonged checkpoint activation. Taken together, our results demonstrate that Sgo2 is important for chromosome biorientation and that it controls docking of the Passenger proteins on chromosomes in early mitotic cells.


2004 ◽  
Vol 166 (2) ◽  
pp. 179-191 ◽  
Author(s):  
Reto Gassmann ◽  
Ana Carvalho ◽  
Alexander J. Henzing ◽  
Sandrine Ruchaud ◽  
Damien F. Hudson ◽  
...  

The chromosomal passenger complex of Aurora B kinase, INCENP, and Survivin has essential regulatory roles at centromeres and the central spindle in mitosis. Here, we describe Borealin, a novel member of the complex. Approximately half of Aurora B in mitotic cells is complexed with INCENP, Borealin, and Survivin; and Borealin binds Survivin and INCENP in vitro. A second complex contains Aurora B and INCENP, but no Borealin or Survivin. Depletion of Borealin by RNA interference delays mitotic progression and results in kinetochore–spindle misattachments and an increase in bipolar spindles associated with ectopic asters. The extra poles, which apparently form after chromosomes achieve a bipolar orientation, severely disrupt the partitioning of chromosomes in anaphase. Borealin depletion has little effect on histone H3 serine10 phosphorylation. These results implicate the chromosomal passenger holocomplex in the maintenance of spindle integrity and suggest that histone H3 serine10 phosphorylation is performed by an Aurora B–INCENP subcomplex.


2020 ◽  
Author(s):  
Lin-Ing Wang ◽  
Tyler DeFosse ◽  
Rachel A. Battaglia ◽  
Victoria F. Wagner ◽  
Kim S. McKim

AbstractThe chromosomes in the oocytes of many animals appear to promote bipolar spindle assembly. In Drosophila oocytes, spindle assembly requires the chromosomal passenger complex (CPC), which consists of INCENP, Borealin, Survivin and Aurora B. To determine what recruits the CPC to the chromosomes and its role in spindle assembly, we developed a strategy to manipulate the function and localization of INCENP, which is critical for recruiting the Aurora B kinase. We found that an interaction between Borealin and HP1 is crucial for the initial recruitment of the CPC to the chromosomes and is sufficient to build kinetochores and recruit spindle microtubules. We also found that HP1 moves from the chromosomes to the spindle microtubules along with the CPC, and based on this, propose a mechanism for how the CPC moves from the chromosomes to the microtubules. Within the central spindle, rather than at the centromeres, the CPC and HP1 are required for homologous chromosome bi-orientation.


2020 ◽  
Vol 219 (7) ◽  
Author(s):  
Michela Serena ◽  
Ricardo Nunes Bastos ◽  
Paul R. Elliott ◽  
Francis A. Barr

The Aurora B chromosomal passenger complex (CPC) is a conserved regulator of mitosis. Its functions require localization first to the chromosome arms and then centromeres in mitosis and subsequently the central spindle in anaphase. Here, we analyze the requirements for core CPC subunits, survivin and INCENP, and the mitotic kinesin-like protein 2 (MKLP2) in targeting to these distinct localizations. Centromere recruitment of the CPC requires interaction of survivin with histone H3 phosphorylated at threonine 3, and we provide a complete structure of this assembly. Furthermore, we show that the INCENP RRKKRR-motif is required for both centromeric localization of the CPC in metaphase and MKLP2-dependent transport in anaphase. MKLP2 and DNA bind competitively to this motif, and INCENP T59 phosphorylation acts as a switch preventing MKLP2 binding in metaphase. In anaphase, CPC binding promotes the microtubule-dependent ATPase activity of MKLP2. These results explain how centromere targeting of the CPC in mitosis is coupled to its movement to the central spindle in anaphase.


2007 ◽  
Vol 18 (11) ◽  
pp. 4553-4564 ◽  
Author(s):  
Gerben Vader ◽  
Carin W.A. Cruijsen ◽  
Tanja van Harn ◽  
Martijn J.M. Vromans ◽  
René H. Medema ◽  
...  

The chromosomal passenger complex (CPC) is a critical regulator of chromosome segregation during mitosis by correcting nonbipolar microtubule-kinetochore interactions. By severing these interactions, the CPC is thought to create unattached kinetochores that are subsequently sensed by the spindle assembly checkpoint (SAC) to prevent premature mitotic exit. We now show that spindle checkpoint function of the CPC and its role in eliminating nonbipolar attachments can be uncoupled. Replacing the chromosomal passenger protein INCENP with a mutant allele that lacks its coiled-coil domain results in an overt defect in a SAC-mediated mitotic arrest in response to taxol treatment, indicating that this domain is critical for CPC function in spindle checkpoint control. Surprisingly, this mutant could restore alignment and cytokinesis during unperturbed cell divisions and was capable of resolving syntelic attachments. Also, Aurora-B kinase was localized and activated normally on centromeres in these cells, ruling out a role for the coiled-coil domain in general Aurora-B activation. Thus, mere microtubule destabilization of nonbipolar attachments by the CPC is insufficient to install a checkpoint-dependent mitotic arrest, and additional, microtubule destabilization–independent CPC signaling toward the spindle assembly checkpoint is required for this arrest, potentially through amplification of the unattached kinetochore-derived checkpoint signal.


2006 ◽  
Vol 17 (6) ◽  
pp. 2547-2558 ◽  
Author(s):  
Ulf R. Klein ◽  
Erich A. Nigg ◽  
Ulrike Gruneberg

The chromosomal passenger complex (CPC), consisting of the serine/threonine kinase Aurora B, the inner centromere protein INCENP, Survivin, and Borealin/DasraB, has essential functions at the centromere in ensuring correct chromosome alignment and segregation. Despite observations that small interfering RNA-mediated knockdown of any one member of the CPC abolishes localization of the other subunits, it remains unclear how the complex is targeted to the centromere. We have now identified a ternary subcomplex of the CPC comprising Survivin, Borealin, and the N-terminal 58 amino acids of INCENP in vitro and in vivo. This subcomplex was found to be essential and sufficient for targeting to the centromere. Notably, Aurora B kinase, the enzymatic core of the CPC, was not required for centromere localization of the subcomplex. We demonstrate that CPC targeting to the centromere does not depend on CENP-A and hMis12, two core components for kinetochore/centromere assembly, and provide evidence that the CPC may be directed to centromeric DNA directly via the Borealin subunit. Our findings thus establish a functional module within the CPC that assembles on the N terminus of INCENP and controls centromere recruitment.


2022 ◽  
Author(s):  
Shinichiro Komaki ◽  
Eelco C Tromer ◽  
Geert De Jaeger ◽  
Nancy De Winne ◽  
Maren Heese ◽  
...  

The chromosomal passenger complex (CPC) is a heterotetrameric regulator of eukaryotic cell division, consisting of an Aurora-type kinase and a scaffold built of INCENP, Borealin and Survivin. While most CPC components are conserved across eukaryotes, orthologs of the chromatin reader Survivin have previously only been found in animals and fungi, raising the question of how its essential role is carried out in other eukaryotes. By characterizing proteins that bind to the Arabidopsis Borealin ortholog, we identified BOREALIN RELATED INTERACTOR 1 and 2 (BORI1 and BORI2) as redundant Survivin-like proteins in the context of the CPC in plants. Loss of BORI function is lethal and a reduced expression of BORIs causes severe developmental defects. Similar to Survivin, we find that the BORIs bind to phosphorylated histone H3, relevant for correct CPC association with chromatin. However, this interaction is not mediated by a BIR domain as in previously recognized Survivin orthologs, but by an FHA domain, a widely conserved phosphate-binding module. We propose that the unifying criterion of Survivin-type proteins is a helix that facilitates complex formation with the other two scaffold components, and that the addition of a phosphate-binding domain, necessary for concentration at the inner centromere, evolved in parallel in different eukaryotic groups. Using sensitive similarity searches, we indeed find conservation of this helical domain between animals and plants, and identify the missing CPC component in most eukaryotic supergroups. Interestingly, we also detect Survivin orthologs without a defined phosphate-binding domain, possibly reflecting the situation in the last eukaryotic common ancestor.


2019 ◽  
Vol 218 (12) ◽  
pp. 3912-3925 ◽  
Author(s):  
Maria A. Abad ◽  
Jan G. Ruppert ◽  
Lana Buzuk ◽  
Martin Wear ◽  
Juan Zou ◽  
...  

Chromosome association of the chromosomal passenger complex (CPC; consisting of Borealin, Survivin, INCENP, and the Aurora B kinase) is essential to achieve error-free chromosome segregation during cell division. Hence, understanding the mechanisms driving the chromosome association of the CPC is of paramount importance. Here using a multifaceted approach, we show that the CPC binds nucleosomes through a multivalent interaction predominantly involving Borealin. Strikingly, Survivin, previously suggested to target the CPC to centromeres, failed to bind nucleosomes on its own and requires Borealin and INCENP for its binding. Disrupting Borealin–nucleosome interactions excluded the CPC from chromosomes and caused chromosome congression defects. We also show that Borealin-mediated chromosome association of the CPC is critical for Haspin- and Bub1-mediated centromere enrichment of the CPC and works upstream of the latter. Our work thus establishes Borealin as a master regulator determining the chromosome association and function of the CPC.


Sign in / Sign up

Export Citation Format

Share Document