scholarly journals Varp Is a Novel Rab32/38-binding Protein That Regulates Tyrp1 Trafficking in Melanocytes

2009 ◽  
Vol 20 (12) ◽  
pp. 2900-2908 ◽  
Author(s):  
Kanako Tamura ◽  
Norihiko Ohbayashi ◽  
Yuto Maruta ◽  
Eiko Kanno ◽  
Takashi Itoh ◽  
...  

Two small GTPase Rabs, Rab32 and Rab38, have recently been proposed to regulate trafficking of melanogenic enzymes to melanosomes in mammalian epidermal melanocytes; however, the exact molecular mechanism of Rab32/38-mediated transport of melanogenic enzymes has never been clarified, because no Rab32/38-specific effector has ever been identified. In this study, we screened for a Rab32/38-specific effector by a yeast two-hybrid assay using a guanosine triphosphate (GTP)-locked Rab32/38 as bait and found that VPS9-ankyrin-repeat protein (Varp)/Ankrd27, characterized previously as a guanine nucleotide exchange factor (GEF) for Rab21, functions as a specific Rab32/38-binding protein in mouse melanocyte cell line melan-a. Deletion analysis showed that the first ankyrin-repeat (ANKR1) domain functions as a GTP-dependent Rab32/38-binding domain, but that the N-terminal VPS9 domain (i.e., Rab21-GEF domain) does not. Small interfering RNA-mediated knockdown of endogenous Varp in melan-a cells caused a dramatic reduction in Tyrp1 (tyrosinase-related protein 1) signals from melanosomes but did not cause any reduction in Pmel17 signals. Furthermore, expression of the ANKR1 domain in melan-a cells also caused a dramatic reduction of Tyrp1 signals, whereas the VPS9 domain had no effect. Based on these findings, we propose that Varp functions as the Rab32/38 effector that controls trafficking of Tyrp1 in melanocytes.

Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 2089 ◽  
Author(s):  
Iker Lamas ◽  
Nathalie Weber ◽  
Sophie G. Martin

The small GTPase Cdc42 is critical for cell polarization in eukaryotic cells. In rod-shaped fission yeast Schizosaccharomyces pombe cells, active GTP-bound Cdc42 promotes polarized growth at cell poles, while inactive Cdc42-GDP localizes ubiquitously also along cell sides. Zones of Cdc42 activity are maintained by positive feedback amplification involving the formation of a complex between Cdc42-GTP, the scaffold Scd2, and the guanine nucleotide exchange factor (GEF) Scd1, which promotes the activation of more Cdc42. Here, we use the CRY2-CIB1 optogenetic system to recruit and cluster a cytosolic Cdc42 variant at the plasma membrane and show that this leads to its moderate activation also on cell sides. Surprisingly, Scd2, which binds Cdc42-GTP, is still recruited to CRY2-Cdc42 clusters at cell sides in individual deletion of the GEFs Scd1 or Gef1. We show that activated Cdc42 clusters at cell sides are able to recruit Scd1, dependent on the scaffold Scd2. However, Cdc42 activity is not amplified by positive feedback and does not lead to morphogenetic changes, due to antagonistic activity of the GTPase activating protein Rga4. Thus, the cell architecture is robust to moderate activation of Cdc42 at cell sides.


2020 ◽  
Vol 21 (3) ◽  
pp. 823 ◽  
Author(s):  
Daniel Becsky ◽  
Szuzina Gyulai-Nagy ◽  
Arpad Balind ◽  
Peter Horvath ◽  
Laszlo Dux ◽  
...  

Skeletal muscle is constantly renewed in response to injury, exercise, or muscle diseases. Muscle stem cells, also known as satellite cells, are stimulated by local damage to proliferate extensively and form myoblasts that then migrate, differentiate, and fuse to form muscle fibers. The transmembrane heparan sulfate proteoglycan syndecan-4 plays multiple roles in signal transduction processes, such as regulating the activity of the small GTPase Rac1 (Ras-related C3 botulinum toxin substrate 1) by binding and inhibiting the activity of Tiam1 (T-lymphoma invasion and metastasis-1), a guanine nucleotide exchange factor for Rac1. The Rac1-mediated actin remodeling is required for cell migration. Syndecan-4 knockout mice cannot regenerate injured muscle; however, the detailed underlying mechanism is unknown. Here, we demonstrate that shRNA-mediated knockdown of syndecan-4 decreases the random migration of mouse myoblasts during live-cell microscopy. Treatment with the Rac1 inhibitor NSC23766 did not restore the migration capacity of syndecan-4 silenced cells; in fact, it was further reduced. Syndecan-4 knockdown decreased the directional persistence of migration, abrogated the polarized, asymmetric distribution of Tiam1, and reduced the total Tiam1 level of the cells. Syndecan-4 affects myoblast migration via its role in expression and localization of Tiam1; this finding may facilitate greater understanding of the essential role of syndecan-4 in the development and regeneration of skeletal muscle.


2008 ◽  
Vol 19 (9) ◽  
pp. 3782-3792 ◽  
Author(s):  
Amber L. Bowman ◽  
Dawn H. Catino ◽  
John C. Strong ◽  
William R. Randall ◽  
Aikaterini Kontrogianni-Konstantopoulos ◽  
...  

Obscurin is an ∼800-kDa protein composed of structural and signaling domains that organizes contractile structures in striated muscle. We have studied the Rho-GEF domain of obscurin to understand its roles in morphogenesis and signaling. We used adenoviral overexpression of this domain, together with ultrastructural and immunofluorescence methods, to examine its effect on maturing myofibrils. We report that overexpression of the Rho-GEF domain specifically inhibits the incorporation of titin into developing Z-disks and disrupts the structure of the Z-disk and Z/I junction, and alters features of the A/I junction. The organization of other sarcomeric markers, including α-actinin, was not affected. We identified Ran binding protein 9 (RanBP9) as a novel ligand of the Rho-GEF domain and showed that binding is specific, with an apparent binding affinity of 1.9 μM. Overexpression of the binding region of RanBP9 also disrupted the incorporation of titin into developing Z-disks. Immunofluorescence localization during myofibrillogenesis indicated that the Rho-GEF domain assembles into sarcomeres before RanBP9, which first occurs in myonuclei and later in development translocates to the myoplasm, where it colocalizes with obscurin. Both the Rho-GEF domain and its binding region on RanBP9 bind directly to the N-terminal Ig domains of titin, which flank the Z-disk. Our results suggest that the Rho-GEF domain interacts with RanBP9 and that both can interact with the N-terminal region of titin to influence the formation of the Z-disk and A/I junction.


2002 ◽  
Vol 277 (20) ◽  
pp. 17385-17388 ◽  
Author(s):  
Michael E. Nemergut ◽  
Mark E. Lindsay ◽  
Amy M. Brownawell ◽  
Ian G. Macara

F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1788 ◽  
Author(s):  
Angika Basant ◽  
Michael Glotzer

Cytokinesis in metazoan cells is mediated by an actomyosin-based contractile ring that assembles in response to activation of the small GTPase RhoA. The guanine nucleotide exchange factor that activates RhoA during cytokinesis, ECT-2, is highly regulated. In most metazoan cells, with the notable exception of the early Caenorhabditis elegans embryo, RhoA activation and furrow ingression require the centralspindlin complex. This exception is due to the existence of a parallel pathway for RhoA activation in C. elegans. Centralspindlin contains CYK-4 which contains a predicted Rho family GTPase-activating protein (GAP) domain. The function of this domain has been the subject of considerable debate. Some publications suggest that the GAP domain promotes RhoA activation (for example, Zhang and Glotzer, 2015; Loria, Longhini and Glotzer, 2012), whereas others suggest that it functions to inactivate the GTPase Rac1 (for example, Zhuravlev et al., 2017). Here, we review the mechanisms underlying RhoA activation during cytokinesis, primarily focusing on data in C. elegans. We highlight the importance of considering the parallel pathway for RhoA activation and detailed analyses of cyk-4 mutant phenotypes when evaluating the role of the GAP domain of CYK-4.


2018 ◽  
Author(s):  
Norito Sasaki ◽  
Masano Shiraiwa ◽  
Miharu Maeda ◽  
Tomohiro Yorimitsu ◽  
Ken Sato ◽  
...  

AbstractSecretory proteins synthesized within the endoplasmic reticulum (ER) are exported via coat protein complex II (COPII)-coated vesicles. The formation of the COPII-coated vesicles is initiated by activation of the small GTPase, Sar1. cTAGE5 directly interacts with a guanine-nucleotide exchange factor (GEF), Sec12, and a GTPase-activating protein (GAP) of Sar1, Sec23. We have previously shown that cTAGE5 recruits Sec12 to the ER exit sites for efficient production of activated Sar1 for collagen secretion. However, the functional significance of the interaction between cTAGE5 and Sec23 has not been fully elucidated. In this study, we showed that cTAGE5 enhances the GAP activity of Sec23 toward Sar1. In addition, the interaction of cTAGE5 with Sec23 is necessary for collagen exit from the ER. Our data suggests that cTAGE5 acts as a Sar1 GTPase regulator for collagen secretion.


2018 ◽  
Author(s):  
Meng Shi ◽  
Bing Chen ◽  
Boon Kim Boh ◽  
Yan Zhou ◽  
Divyanshu Mahajan ◽  
...  

AbstractThe endosome-to-Golgi or endocytic retrograde trafficking pathway is an important post-Golgi recycling route. We made a novel discovery that the retrograde trafficking of cargos is inhibited and stimulated by the absence and presence, respectively, of amino acids (AAs), especially glutamine. By testing components of the AA-stimulated mTORC1 signaling pathway, we demonstrated that SLC38A9, v-ATPase and Ragulator, but not Rag GTPases and mTORC1, are essential for the AA-stimulated trafficking. Arl5, an ARF-like family small GTPase, interacts with Ragulator in an AA-regulated manner and both Arl5 and its effector, the Golgi-associated retrograde protein complex (GARP), are required for the AA-stimulated trafficking. We have therefore identified a mechanistic connection between the nutrient signaling and the retrograde trafficking pathway, whereby SLC38A9 and v-ATPase sense AA-sufficiency and Ragulator functions as a guanine nucleotide exchange factor to activate Arl5, which, together with GARP, a tethering factor, probably facilitates the endosome-to-Golgi trafficking.


Sign in / Sign up

Export Citation Format

Share Document