scholarly journals CDK promotes interactions of Sld3 and Drc1 with Cut5 for initiation of DNA replication in fission yeast

2011 ◽  
Vol 22 (14) ◽  
pp. 2620-2633 ◽  
Author(s):  
Masayoshi Fukuura ◽  
Koji Nagao ◽  
Chikashi Obuse ◽  
Tatsuro S. Takahashi ◽  
Takuro Nakagawa ◽  
...  

Cyclin-dependent kinase (CDK) plays essential roles in the initiation of DNA replication in eukaryotes. Although interactions of CDK-phosphorylated Sld2/Drc1 and Sld3 with Dpb11 have been shown to be essential in budding yeast, it is not known whether the mechanism is conserved. In this study, we investigated how CDK promotes the assembly of replication proteins onto replication origins in fission yeast. Phosphorylation of Sld3 was found to be dependent on CDK in S phase. Alanine substitutions at CDK sites decreased the interaction with Cut5/Dpb11 at the N-terminal BRCT motifs and decreased the loading of Cut5 onto replication origins. This defect was suppressed by overexpression of drc1+. Phosphorylation of a conserved CDK site, Thr-111, in Drc1 was critical for interaction with Cut5 at the C-terminal BRCT motifs and was required for loading of Cut5. In a yeast three-hybrid assay, Sld3, Cut5, and Drc1 were found to form a ternary complex dependent on the CDK sites of Sld3 and Drc1, and Drc1–Cut5 binding enhanced the Sld3–Cut5 interaction. These results show that the mechanism of CDK-dependent loading of Cut5 is conserved in fission yeast in a manner similar to that elucidated in budding yeast.

1999 ◽  
Vol 112 (14) ◽  
pp. 2381-2390
Author(s):  
M. Sanchez ◽  
A. Calzada ◽  
A. Bueno

The cdc18(+) gene of the fission yeast Schizosaccharomyces pombe is involved in the initiation of DNA replication as well as in coupling the S phase to mitosis. In this work, we show that the Saccharomyces cerevisiae CDC6 gene complements cdc18-K46 ts and cdc18 deletion mutant S. pombe strains. The budding yeast gene suppresses both the initiation and the checkpoint defects associated with the lack of cdc18(+). The Cdc6 protein interacts in vivo with Cdc2 kinase complexes. Interestingly, Cdc6 is an in vitro substrate for Cdc13/Cdc2 and Cig1/Cdc2, but not for Cig2/Cdc2-associated kinases. Overexpression of Cdc6 in fission yeast induces multiple rounds of S-phase in the absence of mitosis and cell division. This CDC6-dependent continuous DNA synthesis phenotype is independent of the presence of a functional cdc18(+) gene product and, significantly, requires only Cig2/Cdc2-associated kinase activity. Finally, these S. pombe over-replicating cells do not require any protein synthesis other than that of Cdc6. Our data strongly suggest that CDC6 and cdc18(+) are functional homologues and also support the idea that controls restricting genome duplication diverge in fission and budding yeast.


2004 ◽  
Vol 24 (17) ◽  
pp. 7419-7434 ◽  
Author(s):  
Masashi Uchiyama ◽  
Teresa S.-F. Wang

ABSTRACT The B-subunit (p70/Pol12p) of the DNA polymerase α-primase (Polα-primase) complex is thought to have a regulatory role in an early stage of S phase. We generated a panel of fission yeast thermosensitive mutants of the B-subunit (termed Spb70) to investigate its role in initiation of DNA replication by genetic and biochemical approaches. Here, we show that the fission yeast Spb70 genetically interacts and coprecipitates with origin recognition complex proteins Orp1/Orc1 and Orp2/Orc2 and primase coupling subunit Spp2/p58. A fraction of Spb70 associates with Orp2 on chromatin throughout the cell cycle independent of the other subunits of Polα-primase. Furthermore, primase Spp2/p58 subunit preferentially associates with the unphosphorylated Orp2, and the association requires Spb70. Mutations in orp2+ that abolish or mimic the Cdc2 phosphorylation of Orp2 suppress or exacerbate the thermosensitivity of the spb70 mutants, respectively, indicating that an unphosphorylated Orp2 promotes an Spb70-dependent replication event. Together, these results indicate that the chromatin-bound B-subunit in association with origin recognition complex mediates recruiting Polα-primase complex onto replication origins in G1 pre-Start through an interaction with primase Spp2/p58 subunit. Our results thus suggest a role for the recruited Polα-primase in the initiation of both leading and lagging strands at the replication origins.


1999 ◽  
Vol 112 (12) ◽  
pp. 2011-2018 ◽  
Author(s):  
A. Rowles ◽  
S. Tada ◽  
J.J. Blow

During late mitosis and early G1, a series of proteins are assembled onto replication origins that results in them becoming ‘licensed’ for replication in the subsequent S phase. In Xenopus this first involves the assembly onto chromatin of the Xenopus origin recognition complex XORC, and then XCdc6, and finally the RLF-M component of the replication licensing system. In this paper we examine changes in the way that XORC associates with chromatin in the Xenopus cell-free system as origins become licensed. Restricting the quantity of XORC on chromatin reduced the extent of replication as expected if a single molecule of XORC is sufficient to specify a single replication origin. During metaphase, XOrc1 associated only weakly with chromatin. In early interphase, XOrc1 formed a strong complex with chromatin, as evidenced by its resistance to elution by 200 mM salt, and this state persisted when XCdc6 was assembled onto the chromatin. As a consequence of origins becoming licensed the association of XOrc1 and XCdc6 with chromatin was destabilised, and XOrc1 became susceptible to removal from chromatin by exposure to either high salt or high Cdk levels. At this stage the essential function for XORC and XCdc6 in DNA replication had already been fulfilled. Since high Cdk levels are required for the initiation of DNA replication, this ‘licensing-dependent origin inactivation’ may contribute to mechanisms that prevent re-licensing of replication origins once S phase has started.


2004 ◽  
Vol 15 (8) ◽  
pp. 3740-3750 ◽  
Author(s):  
Yoshiki Yamada ◽  
Takuro Nakagawa ◽  
Hisao Masukata

Assembly of initiation factors on individual replication origins at onset of S phase is crucial for regulation of replication timing and repression of initiation by S-phase checkpoint control. We dissected the process of preinitiation complex formation using a point mutation in fission yeast nda4-108/mcm5 that shows tight genetic interactions with sna41+/cdc45+. The mutation does not affect loading of MCM complex onto origins, but impairs Cdc45-loading, presumably because of a defect in interaction of MCM with Cdc45. In the mcm5 mutant, however, Sld3, which is required for Cdc45-loading, proficiently associates with origins. Origin-association of Sld3 without Cdc45 is also observed in the sna41/cdc45 mutant. These results suggest that Sld3-loading is independent of Cdc45-loading, which is different from those observed in budding yeast. Interestingly, returning the arrested mcm5 cells to the permissive temperature results in immediate loading of Cdc45 to the origin and resumption of DNA replication. These results suggest that the complex containing MCM and Sld3 is an intermediate for initiation of DNA replication in fission yeast.


F1000Research ◽  
2012 ◽  
Vol 1 ◽  
pp. 58 ◽  
Author(s):  
Amna Chaudari ◽  
Joel A Huberman

Telomeres of the fission yeast, Schizosaccharomyces pombe, are known to replicate in late S phase, but the reasons for this late replication are not fully understood. We have identified two closely-spaced DNA replication origins, 5.5 to 8 kb upstream from the telomere itself. These are the most telomere-proximal of all the replication origins in the fission yeast genome. When located by themselves in circular plasmids, these origins fired in early S phase, but if flanking sequences closer to the telomere were included in the circular plasmid, then replication was restrained to late S phase – except in cells lacking the replication-checkpoint kinase, Cds1. We conclude that checkpoint-dependent late replication of telomere-associated sequences is dependent on nearby cis-acting sequences, not on proximity to the physical end of a linear chromosome.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yongzheng Li ◽  
Boxin Xue ◽  
Mengling Zhang ◽  
Liwei Zhang ◽  
Yingping Hou ◽  
...  

Abstract Background Metazoan cells only utilize a small subset of the potential DNA replication origins to duplicate the whole genome in each cell cycle. Origin choice is linked to cell growth, differentiation, and replication stress. Although various genetic and epigenetic signatures have been linked to the replication efficiency of origins, there is no consensus on how the selection of origins is determined. Results We apply dual-color stochastic optical reconstruction microscopy (STORM) super-resolution imaging to map the spatial distribution of origins within individual topologically associating domains (TADs). We find that multiple replication origins initiate separately at the spatial boundary of a TAD at the beginning of the S phase. Intriguingly, while both high-efficiency and low-efficiency origins are distributed homogeneously in the TAD during the G1 phase, high-efficiency origins relocate to the TAD periphery before the S phase. Origin relocalization is dependent on both transcription and CTCF-mediated chromatin structure. Further, we observe that the replication machinery protein PCNA forms immobile clusters around TADs at the G1/S transition, explaining why origins at the TAD periphery are preferentially fired. Conclusion Our work reveals a new origin selection mechanism that the replication efficiency of origins is determined by their physical distribution in the chromatin domain, which undergoes a transcription-dependent structural re-organization process. Our model explains the complex links between replication origin efficiency and many genetic and epigenetic signatures that mark active transcription. The coordination between DNA replication, transcription, and chromatin organization inside individual TADs also provides new insights into the biological functions of sub-domain chromatin structural dynamics.


1997 ◽  
Vol 110 (6) ◽  
pp. 753-763 ◽  
Author(s):  
C.S. Detweiler ◽  
J.J. Li

CDC6 is essential for the initiation of DNA replication in the budding yeast Saccharomyces cerevisiae. Here we examine the timing of Cdc6p expression and function during the cell cycle. Cdc6p is expressed primarily between mitosis and Start. This pattern of expression is due in part to posttranscriptional controls, since it is maintained when CDC6 is driven by a constitutively induced promoter. Transcriptional repression of CDC6 or exposure of cdc6-1(ts) cells to the restrictive temperature at mitosis blocks subsequent S phase, demonstrating that the activity of newly synthesized Cdc6p is required each cell cycle for DNA replication. In contrast, similar perturbations imposed on cells arrested in G(1) before Start have moderate or no effects on DNA replication. This suggests that, between mitosis and Start, Cdc6p functions in an early step of initiation, effectively making cells competent for replication. Prolonged exposure of cdc6-1(ts) cells to the restrictive temperature at the pre-Start arrest eventually does cripple S phase, indicating that Cdc6p also functions to maintain this initiation competence during G(1). The requirement for Cdc6p to establish and maintain initiation competence tightly correlates with the requirement for Cdc6p to establish and maintain the pre-replicative complex at a replication origin, strongly suggesting that the pre-replicative complex is an important intermediate for the initiation of DNA replication. Confining assembly of the complex to G(1) by restricting expression of Cdc6p to this period may be one way of ensuring precisely one round of replication per cell cycle.


2006 ◽  
Vol 26 (3) ◽  
pp. 1098-1108 ◽  
Author(s):  
Masayoshi Iizuka ◽  
Tomoko Matsui ◽  
Haruhiko Takisawa ◽  
M. Mitchell Smith

ABSTRACT The initiation of DNA replication is tightly regulated in eukaryotic cells to ensure that the genome is precisely duplicated once and only once per cell cycle. This is accomplished by controlling the assembly of a prereplicative complex (pre-RC) which involves the sequential binding to replication origins of the origin recognition complex (ORC), Cdc6/Cdc18, Cdt1, and the minichromosome maintenance complex (Mcm2-Mcm7, or Mcm2-7). Several mechanisms of pre-RC regulation are known, including ATP utilization, cyclin-dependent kinase levels, protein turnover, and Cdt1 binding by geminin. Histone acetylation may also affect the initiation of DNA replication, but at present neither the enzymes nor the steps involved are known. Here, we show that Hbo1, a member of the MYST histone acetyltransferase family, is a previously unrecognized positive regulatory factor for pre-RC assembly. When Hbo1 expression was inhibited in human cells, Mcm2-7 failed to associate with chromatin even though ORC and Cdc6 loading was normal. When Xenopus egg extracts were immunodepleted of Xenopus Hbo1 (XHbo1), chromatin binding of Mcm2-7 was lost, and DNA replication was abolished. The binding of Mcm2-7 to chromatin in XHbo1-depleted extracts could be restored by the addition of recombinant Cdt1.


2020 ◽  
Author(s):  
Béla Novák ◽  
John J Tyson

AbstractTypically cells replicate their genome only once per division cycle, but under some circumstances, both natural and unnatural, cells synthesize an overabundance of DNA, either in a disorganized fashion (‘over-replication’) or by a systematic doubling of chromosome number (‘endoreplication’). These variations on the theme of DNA replication and division have been studied in strains of fission yeast, Schizosaccharomyces pombe, carrying mutations that interfere with the function of mitotic cyclin-dependent kinase (Cdk1:Cdc13) without impeding the roles of DNA-replication licensing factor (Cdc18) and S-phase cyclin-dependent kinase (Cdk1:Cig2). Some of these mutations support endoreplication, and some over-replication. In this paper, we propose a dynamical model of the interactions among the proteins governing DNA replication and cell division in fission yeast. By computational simulations of the mathematical model, we account for the observed phenotypes of these re-replicating mutants, and by theoretical analysis of the dynamical system, we provide insight into the molecular distinctions between over-replicating and endoreplicating cells. In case of induced over-production of regulatory proteins, our model predicts that cells first switch from normal mitotic cell cycles to growth-controlled endoreplication, and ultimately to disorganized over-replication, parallel to the slow increase of protein to very high levels.


Sign in / Sign up

Export Citation Format

Share Document