scholarly journals The microtubule cross-linker Feo controls the midzone stability, motor composition, and elongation of the anaphase B spindle in Drosophila embryos

2015 ◽  
Vol 26 (8) ◽  
pp. 1452-1462 ◽  
Author(s):  
Haifeng Wang ◽  
Ingrid Brust-Mascher ◽  
Jonathan M. Scholey

Chromosome segregation during anaphase depends on chromosome-to-pole motility and pole-to-pole separation. We propose that in Drosophila embryos, the latter process (anaphase B) depends on a persistent kinesin-5–generated interpolar (ip) microtubule (MT) sliding filament mechanism that “engages” to push apart the spindle poles when poleward flux is turned off. Here we investigated the contribution of the midzonal, antiparallel MT-cross-linking nonmotor MAP, Feo, to this “slide-and-flux-or-elongate” mechanism. Whereas Feo homologues in other systems enhance the midzone localization of the MT-MT cross-linking motors kinesin-4, -5 and -6, the midzone localization of these motors is respectively enhanced, reduced, and unaffected by Feo. Strikingly, kinesin-5 localizes all along ipMTs of the anaphase B spindle in the presence of Feo, including at the midzone, but the antibody-induced dissociation of Feo increases kinesin-5 association with the midzone, which becomes abnormally narrow, leading to impaired anaphase B and incomplete chromosome segregation. Thus, although Feo and kinesin-5 both preferentially cross-link MTs into antiparallel polarity patterns, kinesin-5 cannot substitute for loss of Feo function. We propose that Feo controls the organization, stability, and motor composition of antiparallel ipMTs at the midzone, thereby facilitating the kinesin-5–driven sliding filament mechanism underlying proper anaphase B spindle elongation and chromosome segregation.

2013 ◽  
Vol 203 (1) ◽  
pp. 35-46 ◽  
Author(s):  
Haifeng Wang ◽  
Ingrid Brust-Mascher ◽  
Gul Civelekoglu-Scholey ◽  
Jonathan M. Scholey

Anaphase B spindle elongation contributes to chromosome segregation during Drosophila melanogaster embryo mitosis. We propose that this process is driven by a kinesin-5–generated interpolar microtubule (MT; ipMT) sliding filament mechanism that engages when poleward flux is turned off. In this paper, we present evidence that anaphase B is induced by the minus end–stabilizing protein Patronin, which antagonizes the kinesin-13 depolymerase KLP10A at spindle poles, thereby switching off the depolymerization of the minus ends of outwardly sliding ipMTs to suppress flux. Although intact cortices, kinetochore MTs, and midzone augmentation are dispensable, this Patronin-based change in ipMT minus-end dynamics is sufficient to induce the elongation of spindles capable of separating chromosomes.


2011 ◽  
Vol 39 (5) ◽  
pp. 1149-1153 ◽  
Author(s):  
Ingrid Brust-Mascher ◽  
Jonathan M. Scholey

Anaphase B spindle elongation plays an important role in chromosome segregation. In the present paper, we discuss our model for anaphase B in Drosophila syncytial embryos, in which spindle elongation depends on an ip (interpolar) MT (microtubule) sliding filament mechanism generated by homotetrameric kinesin-5 motors acting in concert with poleward ipMT flux, which acts as an ‘on/off’ switch. Specifically, the pre-anaphase B spindle is maintained at a steady-state length by the balance between ipMT sliding and ipMT depolymerization at spindle poles, producing poleward flux. Cyclin B degradation at anaphase B onset triggers: (i) an MT catastrophe gradient causing ipMT plus ends to invade the overlap zone where ipMT sliding forces are generated; and (ii) the inhibition of ipMT minus-end depolymerization so flux is turned ‘off’, tipping the balance of forces to allow outward ipMT sliding to push apart the spindle poles. We briefly comment on the relationship of this model to anaphase B in other systems.


2007 ◽  
Vol 177 (6) ◽  
pp. 995-1004 ◽  
Author(s):  
Dhanya K. Cheerambathur ◽  
Gul Civelekoglu-Scholey ◽  
Ingrid Brust-Mascher ◽  
Patrizia Sommi ◽  
Alex Mogilner ◽  
...  

Anaphase B in Drosophila embryos is initiated by the inhibition of microtubule (MT) depolymerization at spindle poles, which allows outwardly sliding interpolar (ip) MTs to drive pole–pole separation. Using fluorescence recovery after photobleaching, we observed that MTs throughout the preanaphase B spindle are very dynamic and display complete recovery of fluorescence, but during anaphase B, MTs proximal to the poles stabilize and therefore display lower recovery than those elsewhere. Fluorescence microscopy of the MT tip tracker EB1 revealed that growing MT plus ends localize throughout the preanaphase B spindle but concentrate in the overlap region of interpolar MTs (ipMTs) at anaphase B onset. None of these changes occurred in the presence of nondegradable cyclin B. Modeling suggests that they depend on the establishment of a spatial gradient of MT plus-end catastrophe frequencies, decreasing toward the equator. The resulting redistribution of ipMT plus ends to the overlap zone, together with the suppression of minus-end depolymerization at the poles, could constitute a mechanical switch that initiates spindle elongation.


2007 ◽  
Vol 177 (6) ◽  
pp. 981-993 ◽  
Author(s):  
Anton Khmelinskii ◽  
Clare Lawrence ◽  
Johanna Roostalu ◽  
Elmar Schiebel

Spindle elongation in anaphase of mitosis is a cell cycle–regulated process that requires coordination between polymerization, cross-linking, and sliding of microtubules (MTs). Proteins that assemble at the spindle midzone may be important for this process. In this study, we show that Ase1 and the separase–Slk19 complex drive midzone assembly in yeast. Whereas the conserved MT-bundling protein Ase1 establishes a midzone, separase–Slk19 is required to focus and center midzone components. An important step leading to spindle midzone assembly is the dephosphorylation of Ase1 by the protein phosphatase Cdc14 at the beginning of anaphase. Failure to dephosphorylate Ase1 delocalizes midzone proteins and delays the second, slower phase of anaphase B. In contrast, in cells expressing nonphosphorylated Ase1, anaphase spindle extension is faster, and spindles frequently break. Cdc14 also controls the separase–Slk19 complex indirectly via the Aurora B kinase. Thus, Cdc14 regulates spindle midzone assembly and function directly through Ase1 and indirectly via the separase–Slk19 complex.


2019 ◽  
Author(s):  
Stephanie C. Ems-McClung ◽  
Mackenzie Emch ◽  
Stephanie Zhang ◽  
Serena Mahnoor ◽  
Lesley N. Weaver ◽  
...  

AbstractHigh RanGTP around chromatin is important for governing spindle assembly during meiosis and mitosis by releasing the inhibitory effects of importin α/β. Here we examine how the Ran gradient regulates Kinesin-14 function to control spindle organization. We show that Xenopus Kinesin-14, XCTK2, and importin α/β form an effector gradient, which is highest at the poles that diminishes toward the chromatin and is inverse of the RanGTP gradient. Importin α/β preferentially inhibit XCTK2 anti-parallel microtubule cross-linking and sliding by decreasing the microtubule affinity of the XCTK2 tail domain. This change in microtubule affinity enables RanGTP to target endogenous XCTK2 to the spindle. We propose that these combined actions of the Ran pathway are critical to promote Kinesin-14 parallel microtubule cross-linking at the spindle poles to cluster centrosomes in cancer cells. Furthermore, our work illustrates that RanGTP regulation in the spindle is not simply a switch, but rather generates effector gradients where RanGTP gradually tunes the activities of spindle assembly factors.SummaryEms-McClung et al. visualize a RanGTP effector gradient of association between XCTK2 and importin α/β in the spindle. The importins preferentially inhibit XCTK2-mediate anti-parallel microtubule cross-linking and sliding, which allows XCTK2 to cross-link parallel microtubules and help focus spindle poles.


2017 ◽  
Vol 28 (25) ◽  
pp. 3647-3659 ◽  
Author(s):  
Masashi Yukawa ◽  
Tomoki Kawakami ◽  
Masaki Okazaki ◽  
Kazunori Kume ◽  
Ngang Heok Tang ◽  
...  

Accurate chromosome segregation relies on the bipolar mitotic spindle. In many eukaryotes, spindle formation is driven by the plus-end–directed motor kinesin-5 that generates outward force to establish spindle bipolarity. Its inhibition leads to the emergence of monopolar spindles with mitotic arrest. Intriguingly, simultaneous inactivation of the minus-end–directed motor kinesin-14 restores spindle bipolarity in many systems. Here we show that in fission yeast, three independent pathways contribute to spindle bipolarity in the absence of kinesin-5/Cut7 and kinesin-14/Pkl1. One is kinesin-6/Klp9 that engages with spindle elongation once short bipolar spindles assemble. Klp9 also ensures the medial positioning of anaphase spindles to prevent unequal chromosome segregation. Another is the Alp7/TACC-Alp14/TOG microtubule polymerase complex. Temperature-sensitive alp7cut7pkl1 mutants are arrested with either monopolar or very short spindles. Forced targeting of Alp14 to the spindle pole body is sufficient to render alp7cut7pkl1 triply deleted cells viable and promote spindle assembly, indicating that Alp14-mediated microtubule polymerization from the nuclear face of the spindle pole body could generate outward force in place of Cut7 during early mitosis. The third pathway involves the Ase1/PRC1 microtubule cross-linker that stabilizes antiparallel microtubules. Our study, therefore, unveils multifaceted interplay among kinesin-dependent and -independent pathways leading to mitotic bipolar spindle assembly.


2011 ◽  
Vol 22 (23) ◽  
pp. 4486-4502 ◽  
Author(s):  
Graham J. Buttrick ◽  
John C. Meadows ◽  
Theresa C. Lancaster ◽  
Vincent Vanoosthuyse ◽  
Lindsey A. Shepperd ◽  
...  

Type 1 phosphatase (PP1) antagonizes Aurora B kinase to stabilize kinetochore–microtubule attachments and to silence the spindle checkpoint. We screened for factors that exacerbate the growth defect of Δdis2 cells, which lack one of two catalytic subunits of PP1 in fission yeast, and identified Nsk1, a novel protein required for accurate chromosome segregation. During interphase, Nsk1 resides in the nucleolus but spreads throughout the nucleoplasm as cells enter mitosis. Following dephosphorylation by Clp1 (Cdc14-like) phosphatase and at least one other phosphatase, Nsk1 localizes to the interface between kinetochores and the inner face of the spindle pole body during anaphase. In the absence of Nsk1, some kinetochores become detached from spindle poles during anaphase B. If this occurs late in anaphase B, then the sister chromatids of unclustered kinetochores segregate to the correct daughter cell. These unclustered kinetochores are efficiently captured, retrieved, bioriented, and segregated during the following mitosis, as long as Dis2 is present. However, if kinetochores are detached from a spindle pole early in anaphase B, then these sister chromatids become missegregated. These data suggest Nsk1 ensures accurate chromosome segregation by promoting the tethering of kinetochores to spindle poles during anaphase B.


2019 ◽  
Vol 30 (19) ◽  
pp. 2503-2514 ◽  
Author(s):  
Che-Hang Yu ◽  
Stefanie Redemann ◽  
Hai-Yin Wu ◽  
Robert Kiewisz ◽  
Tae Yeon Yoo ◽  
...  

Spindle microtubules, whose dynamics vary over time and at different locations, cooperatively drive chromosome segregation. Measurements of microtubule dynamics and spindle ultrastructure can provide insight into the behaviors of microtubules, helping elucidate the mechanism of chromosome segregation. Much work has focused on the dynamics and organization of kinetochore microtubules, that is, on the region between chromosomes and poles. In comparison, microtubules in the central-spindle region, between segregating chromosomes, have been less thoroughly characterized. Here, we report measurements of the movement of central-spindle microtubules during chromosome segregation in human mitotic spindles and Caenorhabditis elegans mitotic and female meiotic spindles. We found that these central-spindle microtubules slide apart at the same speed as chromosomes, even as chromosomes move toward spindle poles. In these systems, damaging central-spindle microtubules by laser ablation caused an immediate and complete cessation of chromosome motion, suggesting a strong coupling between central-spindle microtubules and chromosomes. Electron tomographic reconstruction revealed that the analyzed anaphase spindles all contain microtubules with both ends between segregating chromosomes. Our results provide new dynamical, functional, and ultrastructural characterizations of central-spindle microtubules during chromosome segregation in diverse spindles and suggest that central-spindle microtubules and chromosomes are strongly coupled in anaphase.


2014 ◽  
Vol 775-776 ◽  
pp. 29-33 ◽  
Author(s):  
Karine Cappucio de Castro ◽  
Ivan Silva Prado ◽  
Moacyr Clemente Júnior ◽  
Sylma Carvalho Maestrelli ◽  
Neide Aparecida Mariano ◽  
...  

Several cements are used as biomaterials. Biopolymers such as chitosan and collagen exhibit excellent biocompatibility and can be used in the remodeling of bone tissue. The cement must have high mechanical strength and compatibility with original tissue. In this context, the objective of this study was to extract, characterize and cross-link collagen from bovine tendon, forlater associate it with chitosan and calcium phosphate to obtain cements for bone regeneration. Glutaraldehyde was used as cross-linker in 0.1, 0.5, 1.0 and 10% concentration. Infrared analysis confirmed the presence of functional groups characteristic of collagen, whereas the capacity of water absorption decreased with the increasing of cross-linking degree. Denaturation temperatures of collagen samples were obtained by Differential Scanning Calorimetry and Scanning Electron Microscopy showed the fiber structure characteristics of collagen, which were more organized for high degree of cross-linking samples.


Author(s):  
Charles L. Asbury

The separation of sister chromatids during anaphase is the culmination of mitosis and one of the most strikingly beautiful examples of cellular movement. It consists of two distinct processes: Anaphase A, the movement of chromosomes toward spindle poles via shortening of the connecting fibers, and anaphase B, separation of the two poles from one another via spindle elongation. I focus here on anaphase A chromosome-to-pole movement. The chapter begins by summarizing classical observations of chromosome movements, which support the current understanding of anaphase mechanisms. Live cell fluorescence microscopy studies showed that poleward chromosome movement is associated with disassembly, or ‘melting’ of the kinetochore-attached microtubule fibers that link chromosomes to poles. Microtubule-marking techniques established that kinetochore-fiber disassembly often occurs through a ‘pac-man’ mechanism, where tubulin subunits are lost from kinetochore-attached plus ends and the kinetochore appears to consume its microtubule track as it moves poleward. In addition, kinetochore-fiber disassembly in many cells occurs partly through ‘flux’, where the microtubules flow continuously toward the poles and tubulin subunits are lost from minus ends. Molecular mechanistic models for how load-bearing attachments are maintained to disassembling microtubule ends, and how the forces are generated to drive pac-man and flux-based movements, are discussed.


Sign in / Sign up

Export Citation Format

Share Document