scholarly journals A role for Gle1, a regulator of DEAD-box RNA helicases, at centrosomes and basal bodies

2017 ◽  
Vol 28 (1) ◽  
pp. 120-127 ◽  
Author(s):  
Li-En Jao ◽  
Abdalla Akef ◽  
Susan R. Wente

Control of organellar assembly and function is critical to eukaryotic homeostasis and survival. Gle1 is a highly conserved regulator of RNA-dependent DEAD-box ATPase proteins, with critical roles in both mRNA export and translation. In addition to its well-defined interaction with nuclear pore complexes, here we find that Gle1 is enriched at the centrosome and basal body. Gle1 assembles into the toroid-shaped pericentriolar material around the mother centriole. Reduced Gle1 levels are correlated with decreased pericentrin localization at the centrosome and microtubule organization defects. Of importance, these alterations in centrosome integrity do not result from loss of mRNA export. Examination of the Kupffer’s vesicle in Gle1-depleted zebrafish revealed compromised ciliary beating and developmental defects. We propose that Gle1 assembly into the pericentriolar material positions the DEAD-box protein regulator to function in localized mRNA metabolism required for proper centrosome function.

2014 ◽  
Vol 25 (8) ◽  
pp. 1287-1297 ◽  
Author(s):  
Yuxuan Guo ◽  
Youngjo Kim ◽  
Takeshi Shimi ◽  
Robert D. Goldman ◽  
Yixian Zheng

The nuclear lamina (NL) consists of lamin polymers and proteins that bind to the polymers. Disruption of NL proteins such as lamin and emerin leads to developmental defects and human diseases. However, the expression of multiple lamins, including lamin-A/C, lamin-B1, and lamin-B2, in mammals has made it difficult to study the assembly and function of the NL. Consequently, it has been unclear whether different lamins depend on one another for proper NL assembly and which NL functions are shared by all lamins or are specific to one lamin. Using mouse cells deleted of all or different combinations of lamins, we demonstrate that the assembly of each lamin into the NL depends primarily on the lamin concentration present in the nucleus. When expressed at sufficiently high levels, each lamin alone can assemble into an evenly organized NL, which is in turn sufficient to ensure the even distribution of the nuclear pore complexes. By contrast, only lamin-A can ensure the localization of emerin within the NL. Thus, when investigating the role of the NL in development and disease, it is critical to determine the protein levels of relevant lamins and the intricate shared or specific lamin functions in the tissue of interest.


2004 ◽  
Vol 24 (11) ◽  
pp. 4869-4879 ◽  
Author(s):  
Christiane Rollenhagen ◽  
Christine A. Hodge ◽  
Charles N. Cole

ABSTRACT Nuclear pore complexes (NPCs) play an essential role in RNA export. Nucleoporins required for mRNA export in Saccharomyces cerevisiae are found in the Nup84p and Nup82p subcomplexes of the NPC. The Nup82p subcomplex contains Nup82p, Rat7p/Nup159p, Nsp1p, Gle1p/Rss1p, and Rip1p/Nup42p and is found only on the cytoplasmic face of NPCs. Both Rat7p and Gle1p contain binding sites for Rat8p/Dbp5p, an essential DEAD box protein and putative RNA helicase. Rip1p interacts directly with Gle1p and is the only protein known to be essential for mRNA export after heat shock but not under normal growth conditions. We report that in cells lacking Rip1p, both Gle1p and Rat8p dissociate from NPCs following heat shock at 42°C. Rat8p but not Gle1p was retained at NPCs if rip1Δ cells were first shifted to 37°C and then to 42°C, and this was correlated with preserving mRNA export in heat-shocked rip1Δ cells. Export following ethanol shock was less dependent on the presence of Rip1p. Exposure to 10% ethanol led to dissociation of Rat8p from NPCs in both wild-type and rip1Δ cells. Following this treatment, Rat8p was primarily nuclear in wild-type cells but primarily cytoplasmic in rip1Δ cells. We also determined that efficient export of heat shock mRNA after heat shock depends upon a novel 6-amino-acid element within Rat8p. This motif is not required under normal growth conditions or following ethanol shock. These studies suggest that the molecular mechanism responsible for the defect in export of heat shock mRNAs in heat-shocked rip1Δ cells is dissociation of Rat8p from NPCs. These studies also suggest that both nuclear pores and Rat8p have features not required for mRNA export in growing cells but which enhance the ability of mRNAs to be exported following heat shock.


2021 ◽  
Vol 545 ◽  
pp. 138-144
Author(s):  
Yueyue Jing ◽  
Yilin Lv ◽  
Jingya Ye ◽  
Longfang Yao ◽  
Liwen Chen ◽  
...  

2004 ◽  
Vol 24 (3) ◽  
pp. 1155-1167 ◽  
Author(s):  
Daniel Forler ◽  
Gwénaël Rabut ◽  
Francesca D. Ciccarelli ◽  
Andrea Herold ◽  
Thomas Köcher ◽  
...  

ABSTRACT Metazoan NXF1-p15 heterodimers promote the nuclear export of bulk mRNA across nuclear pore complexes (NPCs). In vitro, NXF1-p15 forms a stable complex with the nucleoporin RanBP2/Nup358, a component of the cytoplasmic filaments of the NPC, suggesting a role for this nucleoporin in mRNA export. We show that depletion of RanBP2 from Drosophila cells inhibits proliferation and mRNA export. Concomitantly, the localization of NXF1 at the NPC is strongly reduced and a significant fraction of this normally nuclear protein is detected in the cytoplasm. Under the same conditions, the steady-state subcellular localization of other nuclear or cytoplasmic proteins and CRM1-mediated protein export are not detectably affected, indicating that the release of NXF1 into the cytoplasm and the inhibition of mRNA export are not due to a general defect in NPC function. The specific role of RanBP2 in the recruitment of NXF1 to the NPC is highlighted by the observation that depletion of CAN/Nup214 also inhibits cell proliferation and mRNA export but does not affect NXF1 localization. Our results indicate that RanBP2 provides a major binding site for NXF1 at the cytoplasmic filaments of the NPC, thereby restricting its diffusion in the cytoplasm after NPC translocation. In RanBP2-depleted cells, NXF1 diffuses freely through the cytoplasm. Consequently, the nuclear levels of the protein decrease and export of bulk mRNA is impaired.


1996 ◽  
Vol 134 (5) ◽  
pp. 1141-1156 ◽  
Author(s):  
R Bastos ◽  
A Lin ◽  
M Enarson ◽  
B Burke

Nup153 is a large (153 kD) O-linked glyco-protein which is a component of the basket structure located on the nucleoplasmic face of nuclear pore complexes. This protein exhibits a tripartite structure consisting of a zinc finger domain flanked by large (60-70 kD) NH2- and COOH-terminal domains. When full-length human Nup153 is expressed in BHK cells, it accumulates appropriately at the nucleoplasmic face of the nuclear envelope. Targeting information for Nup153 resides in the NH2-terminal domain since this region of the molecule can direct an ordinarily cytoplasmic protein, pyruvate kinase, to the nuclear face of the nuclear pore complex. Overexpression of Nup153 results in the dramatic accumulation of nuclear poly (A)+ RNA, suggesting an inhibition of RNA export from the nucleus. This is not due to a general decline in nucleocytoplasmic transport or to occlusion or loss of nuclear pore complexes since nuclear protein import is unaffected. While overexpression of certain Nup153 constructs was found to result in the formation of unusual intranuclear membrane arrays, this structural phenotype could not be correlated with the effects on poly (A)+ RNA distribution. The RNA trafficking defect was, however, dependent upon the Nup153 COOH-terminal domain which contains most of the XFXFG repeats. It is proposed that this region of Nup153, lying within the distal ring of the nuclear basket, represents a docking site for mRNA molecules exiting the nucleus.


1995 ◽  
Vol 129 (4) ◽  
pp. 939-955 ◽  
Author(s):  
L C Gorsch ◽  
T C Dockendorff ◽  
C N Cole

In a screen for Saccharomyces cerevisiae genes required for nucleocytoplasmic transport of messenger RNA, we identified the RAT7 gene (ribonucleic acid trafficking), which encodes an essential protein of 1,460 amino acids. Rat7p is located at the nuclear rim in a punctate pattern characteristic of nucleoporins. Furthermore, the central third of Rat7p contains 22 XXFG and three XFXFG degenerate repeats that are similar to signature GLFG and XFXFG repeats present in a majority of yeast and some mammalian nucleoporins sequenced to date. Shift of a strain bearing the temperature-sensitive rat7-1 allele from 23 degrees C to 37 degrees C resulted in rapid (within 15 minutes) cessation of mRNA export, but did not cause concomitant cytoplasmic accumulation of a reporter protein bearing a nuclear localization signal. This suggests that Rat7p may play a direct role in nucleocytoplasmic export of RNA. Immunofluorescence and thin section electron microscopy revealed that in rat7-1 cells grown at 23 degrees C, the majority of nuclear pore complexes (NPCs) were clustered on one side of the nucleus. No ultrastructural abnormalities of the nuclear envelope were seen. Interestingly, shifting rat7-1 cells to 37 degrees C for 1 h caused the NPCs to disperse, restoring near wild-type NPC distribution. After this temperature shift, the mutant Rat7p was no longer detectable by immunofluorescence.


2019 ◽  
Author(s):  
Vasilisa Aksenova ◽  
Hang Noh Lee ◽  
Alexandra Smith ◽  
Shane Chen ◽  
Prasanna Bhat ◽  
...  

AbstractNuclear pore complexes (NPCs) are important for many processes beyond nucleocytoplasmic trafficking, including protein modification, chromatin remodeling, transcription, mRNA processing and mRNA export. The multi-faceted nature of NPCs and the slow turnover of their components has made it difficult to understand the role of basket nucleoporins (Nup153, Nup50 and Tpr) in these diverse processes. To address this question, we used anAuxin-InducedDegron (AID) system to distinguish roles of basket nucleoporins: Loss of individual nucleoporins caused distinct alteration in patterns of nucleocytoplasmic trafficking and gene expression. Importantly, Tpr elimination caused rapid and pronounced changes in transcriptomic profiles within two hours of auxin addition. These changes were dissimilar to shifts observed after loss of Nup153 or Nup50, but closely related to changes after depletion of mRNA export receptor NXF1 or the GANP subunit of the TRanscription-EXport-2 (TREX-2) mRNA export complex. Moreover, GANP association to NPCs was specifically disrupted upon TPR depletion. Together, our findings demonstrate a unique and pivotal role of Tpr in regulating gene expression through GANP- and/or NXF1-dependent mRNA nuclear export.


2021 ◽  
Author(s):  
Mercè Gomar-Alba ◽  
Vasilisa Pozharskaia ◽  
Celia Schaal ◽  
Arun Kumar ◽  
Basile Jacquel ◽  
...  

AbstractNuclear pore complexes (NPCs) mediate communication between the nucleus and the cytoplasm and regulate gene expression by interacting with transcription and mRNA export factors. Lysine acetyl-transferases (KATs) promote transcription through acetylation of chromatin-associated proteins. We find that Esa1, the KAT subunit of the yeast NuA4 complex, also acetylates the nuclear pore basket component Nup60 to promote mRNA export. Acetylation of Nup60 recruits mRNA export factors to the nuclear basket, including the scaffolding subunit of the Transcription and Export 2 (TREX-2) complex, Sac3. Esa1-dependent nuclear export of mRNAs promotes entry into S phase, and is inhibited by the Hos3 deacetylase in G1 daughter cells to restrain their premature commitment to a new cell division cycle. This mechanism also inhibits expression of the nutrient-regulated GAL1 gene specifically in daughter cells. These results reveal how acetylation contributes to the functional plasticity of NPCs in specific cell types, and demonstrate how the evolutionarily conserved NuA4 complex regulates gene expression dually at the level of transcription and mRNA export, by modifying the nucleoplasmic entrance to nuclear pores.


2021 ◽  
Author(s):  
Anne C Meinema ◽  
Theo Aspert ◽  
Sung Sik Lee ◽  
Gilles Charvin ◽  
Yves Barral

The nuclear pore complex (NPC) mediates nearly all exchanges between nucleus and cytoplasm, and changes composition in many species as the organism ages. However, how these changes arise and whether they contribute themselves to aging is poorly understood. We show that in replicatively aging yeast cells attachment of DNA circles to NPCs drives the displacement of the NPCs’ nuclear basket and cytoplasmic complexes. Remodeling of the NPC resulted from the regulation of basket components by SAGA, rather than from damages. These changes affected NPC interaction with mRNA export factors, without affecting the residence of import factors or engaging the NPC quality control machinery. Mutations preventing NPC remodeling extended the replicative lifespan of the cells. Thus, our data indicate that DNA circles accumulating in the mother cell drive aging at least in part by triggering NPC specialization. We suggest that antagonistic pleiotropic effects of NPC specialization are key drivers of aging.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3601
Author(s):  
Mohamed Hamed ◽  
Wolfram Antonin

Nuclear pore complexes (NPCs) mediate the selective and highly efficient transport between the cytoplasm and the nucleus. They are embedded in the two membrane structure of the nuclear envelope at sites where these two membranes are fused to pores. A few transmembrane proteins are an integral part of NPCs and thought to anchor these complexes in the nuclear envelope. In addition, a number of nucleoporins without membrane spanning domains interact with the pore membrane. Here we review our current knowledge of how these proteins interact with the membrane and how this interaction can contribute to NPC assembly, stability and function as well as shaping of the pore membrane.


Sign in / Sign up

Export Citation Format

Share Document