scholarly journals A Zip3-like protein plays a role in crossover formation in the SC-less meiosis of the protist Tetrahymena

2017 ◽  
Vol 28 (6) ◽  
pp. 825-833 ◽  
Author(s):  
Anura Shodhan ◽  
Kensuke Kataoka ◽  
Kazufumi Mochizuki ◽  
Maria Novatchkova ◽  
Josef Loidl

When programmed meiotic DNA double-strand breaks (DSBs) undergo recombinational repair, genetic crossovers (COs) may be formed. A certain level of this is required for the faithful segregation of chromosomes, but the majority of DSBs are processed toward a safer alternative, namely noncrossovers (NCOs), via nonreciprocal DNA exchange. At the crossroads between these two DSB fates is the Msh4-Msh5 (MutSγ) complex, which stabilizes CO-destined recombination intermediates and members of the Zip3/RNF212 family of RING finger proteins, which in turn stabilize MutSγ. These proteins function in the context of the synaptonemal complex (SC) and mainly act on SC-dependent COs. Here we show that in the SC-less ciliate Tetrahymena, Zhp3 (a protein distantly related to Zip3/RNF212), together with MutSγ, is responsible for the majority of COs. This activity of Zhp3 suggests an evolutionarily conserved SC-independent strategy for balancing CO:NCO ratios. Moreover, we report a novel meiosis-specific protein, Sa15, as an interacting partner of Zhp3. Sa15 forms linear structures in meiotic prophase nuclei to which Zhp3 localizes. Sa15 is required for a wild-type level of CO formation. Its linear organization suggests the existence of an underlying chromosomal axis that serves as a scaffold for Zhp3 and other recombination proteins.

2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Lee A. Uranga ◽  
Emigdio D. Reyes ◽  
Praveen L. Patidar ◽  
Lindsay N. Redman ◽  
Shelley L. Lusetti

2007 ◽  
Vol 76 (1) ◽  
pp. 153-160 ◽  
Author(s):  
Ge Wang ◽  
Robert J. Maier

ABSTRACT Homologous recombination is one of the key mechanisms responsible for the repair of DNA double-strand breaks. Recombinational repair normally requires a battery of proteins, each with specific DNA recognition, strand transfer, resolution, or other functions. Helicobacter pylori lacks many of the proteins normally involved in the early stage (presynapsis) of recombinational repair, but it has a RecN homologue with an unclear function. A recN mutant strain of H. pylori was shown to be much more sensitive than its parent to mitomycin C, an agent predominantly causing DNA double-strand breaks. The recN strain was unable to survive exposure to either air or acid as well as the parent strain, and air exposure resulted in no viable recN cells recovered after 8 h. In oxidative stress conditions (i.e., air exposure), a recN strain accumulated significantly more damaged (multiply fragmented) DNA than the parent strain. To assess the DNA recombination abilities of strains, their transformation abilities were compared by separately monitoring transformation using H. pylori DNA fragments containing either a site-specific mutation (conferring rifampin resistance) or a large insertion (kanamycin resistance cassette). The transformation frequencies using the two types of DNA donor were 10- and 50-fold lower, respectively, for the recN strain than for the wild type, indicating that RecN plays an important role in facilitating DNA recombination. In two separate mouse colonization experiments, the recN strain colonized most of the stomachs, but the average number of recovered cells was 10-fold less for the mutant than for the parent strain (a statistically significant difference). Complementation of the recN strain by chromosomal insertion of a functional recN gene restored both the recombination frequency and mouse colonization ability to the wild-type levels. Thus, H. pylori RecN, as a component of DNA recombinational repair, plays a significant role in H. pylori survival in vivo.


2005 ◽  
Vol 57 (1) ◽  
pp. 97-110 ◽  
Author(s):  
Tom R. Meddows ◽  
Andrew P. Savory ◽  
Jane I. Grove ◽  
Timothy Moore ◽  
Robert G. Lloyd

2019 ◽  
Author(s):  
Xuefeng Pan ◽  
Li Yang ◽  
Nan Jiang ◽  
Xifang Chen ◽  
Bo Li ◽  
...  

AbstractFaithful duplication of genomic DNA relies not only on the fidelity of DNA replication itself, but also on fully functional DNA repair and homologous recombination machinery. We report a molecular mechanism responsible for deciding homologous recombinational repair pathways during replication dictated by binding of RecO and RecG to SSB in E.coli. Using a RecG-yfp fusion protein, we found that RecG-yfp foci appeared only in the ΔrecG, ΔrecO and ΔrecA, ΔrecO double mutants. Surprisingly, foci were not observed in wild-type ΔrecG, or double mutants where recG and either recF or, separately recR were deleted. In addition, formation of RecG-yfp foci in the ΔrecO::kanR required wildtype ssb, as ssb-113 could not substitute. This suggests that RecG and RecO binding to SSB is competitive. We also found that the UV resistance of recO alone mutant increased to certain extent by supplementing RecG. In an ssb-113 mutant, RecO and RecG worked following a different pattern. Both RecO and RecG were able to participate in repairing UV damages when grown at permissive temperature, while they could also be involved in making DNA double strand breaks when grown at nonpermissive temperature. So, our results suggested that differential binding of RecG and RecO to SSB in a DNA replication fork in Escherichia coli.may be involved in determining whether the SDSA or DSBR pathway of homologous recombinational repair is used.Author summarySingle strand DNA binding proteins (SSB) stabilize DNA holoenzyme and prevent single strand DNA from folding into non-B DNA structures in a DNA replication fork. It has also been revealed that SSB can also act as a platform for some proteins working in DNA repair and recombination to access DNA molecules when DNA replication fork needs to be reestablished. In Escherichia coli, several proteins working primarily in DNA repair and recombination were found to participate in DNA replication fork resumption by physically interacting with SSB, including RecO and RecG etc. However the hierarchy of these proteins interacting with SSB in Escherichia coli has not been well defined. In this study, we demonstrated a differential binding of RecO and RecG to SSB in DNA replication was used to establish a RecO-dependent pathway of replication fork repair by abolishing a RecG-dependent replication fork repair. We also show that, RecG and RecO could randomly participate in DNA replication repair in the absence of a functional SSB, which may be responsible for the generation of DNA double strand breaks in an ssb-113 mutant in Escherichia coli.


2021 ◽  
Author(s):  
Luis Humberto Cisneros ◽  
Kimberly J Bussey ◽  
Charles Vasque

The clustering of mutations observed in cancer cells is reminiscent of the stress-induced mutagenesis (SIM) response in bacteria. SIM employs error-prone polymerases resulting in mutations concentrated around DNA double-strand breaks with an abundance that decays with genomic distance. We performed a quantitative study on single nucleotide variant calls for whole-genome sequencing data from 1950 tumors and non-inherited mutations from 129 normal samples. We introduce statistical methods to identify mutational clusters and quantify their distribution pattern. Our results show that mutations in both normal and cancer samples are indeed clustered and have shapes indicative of SIM. We found the genomic locations of groups of close mutations are more likely to be prevalent across normal samples than in cancer suggesting loss of regulation over the mutational process during carcinogenesis.


2018 ◽  
Author(s):  
Valentina Infantino ◽  
Evelina Tutucci ◽  
Noël Yeh Martin ◽  
Audrey Zihlmann ◽  
Varinia García-Molinero ◽  
...  

ABSTRACTYra1 is an mRNA export adaptor involved in mRNA biogenesis and export in S. cerevisiae. Yra1 overexpression was recently shown to promote accumulation of DNA:RNA hybrids favoring DNA double strand breaks (DSB), cell senescence and telomere shortening, via an unknown mechanism. Yra1 was also identified at an HO-induced DSB and Yra1 depletion causes defects in DSB repair. Previous work from our laboratory showed that Yra1 ubiquitination by Tom1 is important for mRNA export. Interestingly, we found that Yra1 is also ubiquitinated by the SUMO-targeted ubiquitin ligases Slx5-Slx8 implicated in the interaction of irreparable DSB with nuclear pores. Here we show that Yra1 binds an HO-induced irreparable DSB. Importantly, a Yra1 mutant lacking the evolutionarily conserved C-box is not recruited to an HO-induced irreparable DSB and becomes lethal under DSB induction in a HO-cut reparable system. Together, the data provide evidence that Yra1 plays a crucial role in DSB repair via homologous recombination. Unexpectedly, while the Yra1 C-box is essential, Yra1 sumoylation and/or ubiquitination are dispensable in this process.


2013 ◽  
Vol 288 (23) ◽  
pp. 16579-16587 ◽  
Author(s):  
Anna Mosbech ◽  
Claudia Lukas ◽  
Simon Bekker-Jensen ◽  
Niels Mailand

Protein recruitment to DNA double-strand breaks (DSBs) relies on ubiquitylation of the surrounding chromatin by the RING finger ubiquitin ligases RNF8 and RNF168. Flux through this pathway is opposed by several deubiquitylating enzymes (DUBs), including OTUB1 and USP3. By analyzing the effect of individually overexpressing the majority of human DUBs on RNF8/RNF168-mediated 53BP1 retention at DSB sites, we found that USP44 and USP29 powerfully inhibited this response at the level of RNF168 accrual. Both USP44 and USP29 promoted efficient deubiquitylation of histone H2A, but unlike USP44, USP29 displayed nonspecific reactivity toward ubiquitylated substrates. Moreover, USP44 but not other H2A DUBs was recruited to RNF168-generated ubiquitylation products at DSB sites. Individual depletion of these DUBs only mildly enhanced accumulation of ubiquitin conjugates and 53BP1 at DSBs, suggesting considerable functional redundancy among cellular DUBs that restrict ubiquitin-dependent protein assembly at DSBs. Our findings implicate USP44 in negative regulation of the RNF8/RNF168 pathway and illustrate the usefulness of DUB overexpression screens for identification of antagonizers of ubiquitin-dependent cellular responses.


Sign in / Sign up

Export Citation Format

Share Document