scholarly journals Identification of a signature of evolutionarily conserved stress-induced mutagenesis in cancer

2021 ◽  
Author(s):  
Luis Humberto Cisneros ◽  
Kimberly J Bussey ◽  
Charles Vasque

The clustering of mutations observed in cancer cells is reminiscent of the stress-induced mutagenesis (SIM) response in bacteria. SIM employs error-prone polymerases resulting in mutations concentrated around DNA double-strand breaks with an abundance that decays with genomic distance. We performed a quantitative study on single nucleotide variant calls for whole-genome sequencing data from 1950 tumors and non-inherited mutations from 129 normal samples. We introduce statistical methods to identify mutational clusters and quantify their distribution pattern. Our results show that mutations in both normal and cancer samples are indeed clustered and have shapes indicative of SIM. We found the genomic locations of groups of close mutations are more likely to be prevalent across normal samples than in cancer suggesting loss of regulation over the mutational process during carcinogenesis.

2021 ◽  
Author(s):  
Ihsan Dereli ◽  
Marcello Stanzione ◽  
Fabrizio Olmeda ◽  
Frantzeskos Papanikos ◽  
Marek Baumann ◽  
...  

Abstract In most taxa, halving of chromosome numbers during meiosis requires that homologous chromosomes (homologues) pair and form crossovers. Crossovers emerge from the recombination-mediated repair of programmed DNA double-strand breaks (DSBs). DSBs are generated by SPO11, whose activity requires auxiliary protein complexes, called pre-DSB recombinosomes. To elucidate the spatiotemporal control of the DSB machinery, we focused on an essential SPO11 auxiliary protein, IHO1, which serves as the main anchor for pre-DSB recombinosomes on chromosome cores, called axes. We discovered that DSBs restrict the DSB machinery by at least four distinct pathways in mice. Firstly, by activating the DNA damage response (DDR) kinase ATM, DSBs restrict pre-DSB recombinosome numbers without affecting IHO1. Secondly, in their vicinity, DSBs trigger IHO1 depletion mainly by another DDR kinase, ATR. Thirdly, DSBs enable homologue synapsis, which promotes the depletion of IHO1 and pre-DSB recombinosomes from synapsed axes. Finally, DSBs and three DDR kinases, ATM, ATR and PRKDC, enable stage-specific depletion of IHO1 from all axes. We hypothesize that these four negative feedback pathways protect genome integrity by ensuring that DSBs form without excess, are well-distributed, and are restricted to genomic locations and prophase stages where DSBs are functional for promoting homologue pairing and crossover formation.


2020 ◽  
Vol 21 (8) ◽  
pp. 2679
Author(s):  
Ying Zhang ◽  
Takuya Suzuki ◽  
Ke Li ◽  
Santosh K. Gothwal ◽  
Miki Shinohara ◽  
...  

Homologous recombination is essential for chromosome segregation during meiosis I. Meiotic recombination is initiated by the introduction of double-strand breaks (DSBs) at specific genomic locations called hotspots, which are catalyzed by Spo11 and its partners. DSB hotspots during meiosis are marked with Set1-mediated histone H3K4 methylation. The Spo11 partner complex, Rec114-Mer2-Mei4, essential for the DSB formation, localizes to the chromosome axes. For efficient DSB formation, a hotspot with histone H3K4 methylation on the chromatin loops is tethered to the chromosome axis through the H3K4 methylation reader protein, Spp1, on the axes, which interacts with Mer2. In this study, we found genetic interaction of mutants in a histone modification protein complex called PAF1C with the REC114 and MER2 in the DSB formation in budding yeast Saccharomyces cerevisiae. Namely, the paf1c mutations rtf1 and cdc73 showed synthetic defects in meiotic DSB formation only when combined with a wild-type-like tagged allele of either the REC114 or MER2. The synthetic defect of the tagged REC114 allele in the DSB formation was seen also with the set1, but not with spp1 deletion. These results suggest a novel role of histone modification machinery in DSB formation during meiosis, which is independent of Spp1-mediated loop-axis tethering.


2018 ◽  
Vol 115 (9) ◽  
pp. 2210-2215 ◽  
Author(s):  
Xiao-Yong Fan ◽  
Bi-Kui Tang ◽  
Yuan-Yuan Xu ◽  
Ang-Xuan Han ◽  
Kun-Xiong Shi ◽  
...  

Growing evidence shows that generation of reactive oxygen species (ROS) derived from antibiotic-induced metabolic perturbation contribute to antibiotic lethality. However, our knowledge of the mechanisms by which antibiotic-induced oxidative stress actually kills cells remains elusive. Here, we show that oxidation of dCTP underlies ROS-mediated antibiotic lethality via induction of DNA double-strand breaks (DSBs). Deletion of mazG-encoded 5-OH-dCTP–specific pyrophosphohydrolase potentiates antibiotic killing of stationary-phase mycobacteria, but did not affect antibiotic efficacy in exponentially growing cultures. Critically, the effect of mazG deletion on potentiating antibiotic killing is associated with antibiotic-induced ROS and accumulation of 5-OH-dCTP. Independent lines of evidence presented here indicate that the increased level of DSBs observed in the ΔmazG mutant is a dead-end event accounting for enhanced antibiotic killing. Moreover, we provided genetic evidence that 5-OH-dCTP is incorporated into genomic DNA via error-prone DNA polymerase DnaE2 and repair of 5-OH-dC lesions via the endonuclease Nth leads to the generation of lethal DSBs. This work provides a mechanistic view of ROS-mediated antibiotic lethality in stationary phase and may have broad implications not only with respect to antibiotic lethality but also to the mechanism of stress-induced mutagenesis in bacteria.


2018 ◽  
Author(s):  
Valentina Infantino ◽  
Evelina Tutucci ◽  
Noël Yeh Martin ◽  
Audrey Zihlmann ◽  
Varinia García-Molinero ◽  
...  

ABSTRACTYra1 is an mRNA export adaptor involved in mRNA biogenesis and export in S. cerevisiae. Yra1 overexpression was recently shown to promote accumulation of DNA:RNA hybrids favoring DNA double strand breaks (DSB), cell senescence and telomere shortening, via an unknown mechanism. Yra1 was also identified at an HO-induced DSB and Yra1 depletion causes defects in DSB repair. Previous work from our laboratory showed that Yra1 ubiquitination by Tom1 is important for mRNA export. Interestingly, we found that Yra1 is also ubiquitinated by the SUMO-targeted ubiquitin ligases Slx5-Slx8 implicated in the interaction of irreparable DSB with nuclear pores. Here we show that Yra1 binds an HO-induced irreparable DSB. Importantly, a Yra1 mutant lacking the evolutionarily conserved C-box is not recruited to an HO-induced irreparable DSB and becomes lethal under DSB induction in a HO-cut reparable system. Together, the data provide evidence that Yra1 plays a crucial role in DSB repair via homologous recombination. Unexpectedly, while the Yra1 C-box is essential, Yra1 sumoylation and/or ubiquitination are dispensable in this process.


Genomics Data ◽  
2017 ◽  
Vol 11 ◽  
pp. 43-45
Author(s):  
Bernard J. Pope ◽  
Khalid Mahmood ◽  
Chol-hee Jung ◽  
Peter Georgeson ◽  
Daniel J. Park

2019 ◽  
Vol 5 (1) ◽  
pp. eaau9780 ◽  
Author(s):  
Qianting Zhang ◽  
Shu-Yan Ji ◽  
Kiran Busayavalasa ◽  
Chao Yu

Segregation of homologous chromosomes in meiosis I is tightly regulated by their physical links, or crossovers (COs), generated from DNA double-strand breaks (DSBs) through meiotic homologous recombination. In budding yeast, three ZMM (Zip1/2/3/4, Mer3, Msh4/5) proteins, Zip2, Zip4, and Spo16, form a “ZZS” complex, functioning to promote meiotic recombination via a DSB repair pathway. Here, we identified the mammalian ortholog of Spo16, termed SPO16, which interacts with the mammalian ortholog of Zip2 (SHOC1/MZIP2), and whose functions are evolutionarily conserved to promote the formation of COs. SPO16 localizes to the recombination nodules, as SHOC1 and TEX11 do. SPO16 is required for stabilization of SHOC1 and proper localization of other ZMM proteins. The DSBs formed in SPO16-deleted meiocytes were repaired without COs formation, although synapsis is less affected. Therefore, formation of SPO16-SHOC1 complex–associated recombination intermediates is a key step facilitating meiotic recombination that produces COs from yeast to mammals.


Author(s):  
Florian Ulrich Seifert ◽  
Katja Lammens ◽  
Karl-Peter Hopfner

Together with the Rad50 ATPase, the Mre11 nuclease forms an evolutionarily conserved protein complex that plays a central role in the repair of DNA double-strand breaks (DSBs). Mre11–Rad50 detects and processes DNA ends, and has functions in the tethering as well as the signalling of DSBs. The Mre11 dimer can bind one or two DNA ends or hairpins, and processes DNA endonucleolytically as well as exonucleolytically in the 3′-to-5′ direction. Here, the crystal structure of the Mre11 catalytic domain dimer fromChaetomium thermophilum(CtMre11CD) is reported. CtMre11CDcrystals diffracted to 2.8 Å resolution and revealed previously undefined features within the dimer interface, in particular fully ordered eukaryote-specific insertion loops that considerably expand the dimer interface. Furthermore, comparison with other eukaryotic Mre11 structures reveals differences in the conformations of the dimer and the capping domain. In summary, the results reported here provide new insights into the architecture of the eukaryotic Mre11 dimer.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Romeo Papazyan ◽  
Ekaterina Voronina ◽  
Jessica R Chapman ◽  
Teresa R Luperchio ◽  
Tonya M Gilbert ◽  
...  

Despite the well-established role of heterochromatin in protecting chromosomal integrity during meiosis and mitosis, the contribution and extent of heterochromatic histone posttranslational modifications (PTMs) remain poorly defined. Here, we gained novel functional insight about heterochromatic PTMs by analyzing histone H3 purified from the heterochromatic germline micronucleus of the model organism Tetrahymena thermophila. Mass spectrometric sequencing of micronuclear H3 identified H3K23 trimethylation (H3K23me3), a previously uncharacterized PTM. H3K23me3 became particularly enriched during meiotic leptotene and zygotene in germline chromatin of Tetrahymena and C. elegans. Loss of H3K23me3 in Tetrahymena through deletion of the methyltransferase Ezl3p caused mislocalization of meiosis-induced DNA double-strand breaks (DSBs) to heterochromatin, and a decrease in progeny viability. These results show that an evolutionarily conserved developmental pathway regulates H3K23me3 during meiosis, and our studies in Tetrahymena suggest this pathway may function to protect heterochromatin from DSBs.


2009 ◽  
Vol 29 (13) ◽  
pp. 3500-3516 ◽  
Author(s):  
Hajime Murakami ◽  
Alain Nicolas

ABSTRACT Meiotic recombination is initiated by DNA double-strand breaks (DSBs) that are catalyzed by the type II topoisomerase-like Spo11 protein. Locally, at recombination hot spots, Spo11 introduces DSBs at multiple positions within ∼75 to 250 bp, corresponding to accessible regions of the chromatin. The molecular basis of this multiplicity of cleavage positions, observed in a population of meiotic cells, remains elusive. To address this issue, we have examined the properties of the Gal4BD-Spo11 fusion protein, which targets meiotic DSBs to regions with Gal4 binding sites (UAS). By single-nucleotide resolution mapping of targeted DSBs, we found that DSB formation was restricted to discrete sites approximately 20 nucleotides from the UAS, defining a “DSB targeting window.” Thus, the multiplicity of cleavage positions at natural Spo11 hot spots likely represents binding of Spo11 to different distinct sites within the accessible DNA region in each different meiotic cell. Further, we showed that mutations in the Spo11 moiety affected the DSB distribution in the DSB targeting window and that mutations in the DNA at the Spo11 cleavage site affected DSB position. These results demonstrate that Spo11 itself has sequence preference and contributes to the choice of DSB positions.


Sign in / Sign up

Export Citation Format

Share Document