scholarly journals Rho-dependent control of the Citron kinase, Sticky, drives midbody ring maturation

2019 ◽  
Vol 30 (17) ◽  
pp. 2185-2204 ◽  
Author(s):  
Nour El-amine ◽  
Sabrya C. Carim ◽  
Denise Wernike ◽  
Gilles R. X. Hickson

Rho-dependent proteins control assembly of the cytokinetic contractile ring, yet it remains unclear how those proteins guide ring closure and how they promote subsequent formation of a stable midbody ring. Citron kinase is one important component required for midbody ring formation but its mechanisms of action and relationship with Rho are controversial. Here, we conduct a structure–function analysis of the Drosophila Citron kinase, Sticky, in Schneider’s S2 cells. We define two separable and redundant RhoGEF/Pebble-dependent inputs into Sticky recruitment to the nascent midbody ring and show that each input is subsequently required for retention at, and for the integrity of, the mature midbody ring. The first input is via an actomyosin-independent interaction between Sticky and Anillin, a key scaffold also required for midbody ring formation. The second input requires the Rho-binding domain of Sticky, whose boundaries we have defined. Collectively, these results show how midbody ring biogenesis depends on the coordinated actions of Sticky, Anillin, and Rho.

2019 ◽  
Author(s):  
Nour El-amine ◽  
Sabrya C. Carim ◽  
Denise Wernike ◽  
Gilles R.X. Hickson

AbstractRho-dependent proteins control assembly of the cytokinetic contractile ring (CR), yet it remains unclear how those proteins guide ring closure and how they promote subsequent formation of a stable midbody ring (MR). Citron kinase is one important component required for MR formation but its mechanisms of action and relationship with Rho are controversial. Here, we conduct a structure-function analysis of the Drosophila Citron kinase, Sticky, in Schneider’s S2 cells. We define two separable and redundant RhoGEF/Pebble-dependent inputs into Sticky recruitment to the nascent MR and show that each input is subsequently required for retention at, and for the integrity of, the mature MR. The first input is via an actomyosin-independent interaction between Sticky and Anillin, a key scaffold also required for MR formation. The second input requires the Rho-binding domain of Sticky, whose boundaries we have defined. Collectively, these results show how MR biogenesis depends on the coordinated actions of Sticky, Anillin and Rho.


1977 ◽  
Vol 26 (1) ◽  
pp. 323-337
Author(s):  
P.M. Wassarman ◽  
T.E. Ukena ◽  
W.J. Josefowicz ◽  
G.E. Letourneau ◽  
M.J. Karnovsky

Mouse oocytes are induced by cytochalasin B to undergo ‘pseudocleavage’ in vitro into 2 compartments, only one of which possesses microvilli. It has been found that this particular response to cytochalasin B is related to oocyte size and, possibly, to the acquisition of meiotic competence by the oocyte during its growth phase. Certain of the morphological events which characterize pseudocleavage have been determined using transmission and scanning electron microscopy. These events include: (i) an initial withdrawal of microvilli from the surface of the oocyte, together with the concomitant disappearance of microfilaments normally associated with the microvilli; (ii) the subsequent formation of a pseudocleavage furrow and contractile ring; and (iii) the reappearance of microvilli and associated microfilaments in one of the two resulting oocyte compartments. These changes in surface architecture are reflected in the distribution of fluorescein-conjugated lectins bound to the oocyte surface during pseudocleavage.


2016 ◽  
Vol 27 (11) ◽  
pp. 1821-1833 ◽  
Author(s):  
Yujie Li ◽  
Jenna R. Christensen ◽  
Kaitlin E. Homa ◽  
Glen M. Hocky ◽  
Alice Fok ◽  
...  

The actomyosin contractile ring is a network of cross-linked actin filaments that facilitates cytokinesis in dividing cells. Contractile ring formation has been well characterized in Schizosaccharomyces pombe, in which the cross-linking protein α-actinin SpAin1 bundles the actin filament network. However, the specific biochemical properties of SpAin1 and whether they are tailored for cytokinesis are not known. Therefore we purified SpAin1 and quantified its ability to dynamically bind and bundle actin filaments in vitro using a combination of bulk sedimentation assays and direct visualization by two-color total internal reflection fluorescence microscopy. We found that, while SpAin1 bundles actin filaments of mixed polarity like other α-actinins, SpAin1 has lower bundling activity and is more dynamic than human α-actinin HsACTN4. To determine whether dynamic bundling is important for cytokinesis in fission yeast, we created the less dynamic bundling mutant SpAin1(R216E). We found that dynamic bundling is critical for cytokinesis, as cells expressing SpAin1(R216E) display disorganized ring material and delays in both ring formation and constriction. Furthermore, computer simulations of initial actin filament elongation and alignment revealed that an intermediate level of cross-linking best facilitates filament alignment. Together our results demonstrate that dynamic bundling by SpAin1 is important for proper contractile ring formation and constriction.


2001 ◽  
Vol 26 (6) ◽  
pp. 545-554 ◽  
Author(s):  
Tatsuhiko Noguchi ◽  
Ritsuko Arai ◽  
Fumio Motegi ◽  
Kentaro Nakano ◽  
Issei Mabuchi

2011 ◽  
Vol 195 (4) ◽  
pp. 595-603 ◽  
Author(s):  
Zuni I. Bassi ◽  
Koen J. Verbrugghe ◽  
Luisa Capalbo ◽  
Stephen Gregory ◽  
Emilie Montembault ◽  
...  

In many organisms, the small guanosine triphosphatase RhoA controls assembly and contraction of the actomyosin ring during cytokinesis by activating different effectors. Although the role of some RhoA effectors like formins and Rho kinase is reasonably understood, the functions of another putative effector, Citron kinase (CIT-K), are still debated. In this paper, we show that, contrary to previous models, the Drosophila melanogaster CIT-K orthologue Sticky (Sti) does not require interaction with RhoA to localize to the cleavage site. Instead, RhoA fails to form a compact ring in late cytokinesis after Sti depletion, and this function requires Sti kinase activity. Moreover, we found that the Sti Citron-Nik1 homology domain interacts with RhoA regardless of its status, indicating that Sti is not a canonical RhoA effector. Finally, Sti depletion caused an increase of phosphorylated myosin regulatory light chain at the cleavage site in late cytokinesis. We propose that Sti/CIT-K maintains correct RhoA localization at the cleavage site, which is necessary for proper RhoA activity and contractile ring dynamics.


1974 ◽  
Vol 96 (5) ◽  
pp. 1422-1427 ◽  
Author(s):  
Gabriello Illuminati ◽  
Luigi Mandolini ◽  
Bernardo Masci

2014 ◽  
Vol 25 (6) ◽  
pp. 753-762 ◽  
Author(s):  
Dana M. Alessi Wolken ◽  
Joseph McInnes ◽  
Liza A. Pon

Whereas actomyosin and septin ring organization and function in cytokinesis are thoroughly described, little is known regarding the mechanisms by which the actomyosin ring interacts with septins and associated proteins to coordinate cell division. Here we show that the protein product of YPL158C, Aim44p, undergoes septin-dependent recruitment to the site of cell division. Aim44p colocalizes with Myo1p, the type II myosin of the contractile ring, throughout most of the cell cycle. The Aim44p ring does not contract when the actomyosin ring closes. Instead, it forms a double ring that associates with septin rings on mother and daughter cells after cell separation. Deletion of AIM44 results in defects in contractile ring closure. Aim44p coimmunoprecipitates with Hof1p, a conserved F-BAR protein that binds both septins and type II myosins and promotes contractile ring closure. Deletion of AIM44 results in a delay in Hof1p phosphorylation and altered Hof1p localization. Finally, overexpression of Dbf2p, a kinase that phosphorylates Hof1p and is required for relocalization of Hof1p from septin rings to the contractile ring and for Hof1p-triggered contractile ring closure, rescues the cytokinesis defect observed in aim44∆ cells. Our studies reveal a novel role for Aim44p in regulating contractile ring closure through effects on Hof1p.


2006 ◽  
Vol 17 (2) ◽  
pp. 779-788 ◽  
Author(s):  
Qian Chen ◽  
Hui Li ◽  
Arturo De Lozanne

Dictyostelium DdINCENP is a chromosomal passenger protein associated with centromeres, the spindle midzone, and poles during mitosis and the cleavage furrow during cytokinesis. Disruption of the single DdINCENP gene revealed important roles for this protein in mitosis and cytokinesis. DdINCENP null cells lack a robust spindle midzone and are hypersensitive to microtubule-depolymerizing drugs, suggesting that their spindles may not be stable. Furthermore DdCP224, a protein homologous to the microtubule-stabilizing protein TOGp/XMAP215, was absent from the spindle midzone of DdINCENP null cells. Overexpression of DdCP224 rescued the weak spindle midzone defect of DdINCENP null cells. Although not required for the localization of the myosin II contractile ring and subsequent formation of a cleavage furrow, DdINCENP is important for the abscission of daughter cells at the end of cytokinesis. Finally, we show that the localization of DdINCENP at the cleavage furrow is modulated by myosin II but it occurs by a mechanism different from that controlling the formation of the contractile ring.


Sign in / Sign up

Export Citation Format

Share Document