scholarly journals Activity of a ubiquitin ligase adaptor is regulated by disordered insertions in its arrestin domain

2019 ◽  
Vol 30 (25) ◽  
pp. 3057-3072 ◽  
Author(s):  
Matthew G. Baile ◽  
Evan L. Guiney ◽  
Ethan J. Sanford ◽  
Jason A. MacGurn ◽  
Marcus B. Smolka ◽  
...  

The protein composition of the plasma membrane is rapidly remodeled in response to changes in nutrient availability or cellular stress. This occurs, in part, through the selective ubiquitylation and endocytosis of plasma membrane proteins, which in the yeast Saccharomyces cerevisiae is mediated by the HECT E3 ubiquitin ligase Rsp5 and arrestin-­related trafficking (ART) adaptors. Here, we provide evidence that the ART protein family members are composed of an arrestin fold with interspersed disordered loops. Using Art1 as a model, we show that these loop and tail regions, while not strictly required for function, regulate its activity through two separate mechanisms. Disruption of one loop mediates Art1 substrate specificity. Other loops are subjected to phosphorylation in a manner dependent on the Pho85 cyclins Clg1 and Pho80. Phosphorylation of the loops controls Art1’s localization to the plasma membrane, which promotes cargo ubiquitylation and endocytosis, demonstrating a mechanism through which Art1 activity is regulated.

2019 ◽  
Author(s):  
Matthew G. Baile ◽  
Evan L. Guiney ◽  
Ethan J. Sanford ◽  
Jason A. MacGurn ◽  
Marcus B. Smolka ◽  
...  

ABSTRACTThe protein composition of the plasma membrane is rapidly remodeled in response to changes in nutrient availability or cellular stress. This occurs, in part, through the selective ubiquitylation and endocytosis of plasma membrane proteins which, in the yeastSaccharomyces cerevisiae,is mediated by the HECT E3 ubiquitin ligase Rsp5 and arrestin-related trafficking (ART) adaptors. Here, we provide evidence that an ART family member, Art1, consists of an arrestin fold with extended N- and C-terminal tails, and interspersed with loop insertions. These loop and tail regions, while not strictly required for Art1 function, regulate its activity through two separate mechanisms. One loop mediates Art1 cargo specificity. Other loops are subjected to phosphorylation in a manner dependent on the Pho85 cyclins Clg1 and Pho80. Phosphorylation of the loops controls Art1’s localization to the plasma membrane, which promotes cargo ubiquitylation and endocytosis, demonstrating a mechanism through which Art1 activity is regulated.


2010 ◽  
Vol 30 (24) ◽  
pp. 5598-5607 ◽  
Author(s):  
Riko Hatakeyama ◽  
Masao Kamiya ◽  
Terunao Takahara ◽  
Tatsuya Maeda

ABSTRACT Endocytosis of nutrient transporters is stimulated under various conditions, such as elevated nutrient availability. In Saccharomyces cerevisiae, endocytosis is triggered by ubiquitination of transporters catalyzed by the E3 ubiquitin ligase Rsp5. However, how the ubiquitination is accelerated under certain conditions remains obscure. Here we demonstrate that closely related proteins Aly2/Art3 and Aly1/Art6, which are poorly characterized members of the arrestin-like protein family, mediate endocytosis of the aspartic acid/glutamic acid transporter Dip5. In aly2Δ cells, Dip5 is stabilized at the plasma membrane and is not endocytosed efficiently. Efficient ubiquitination of Dip5 is dependent on Aly2. aly1Δ cells also show deficiency in Dip5 endocytosis, although less remarkably than aly2Δ cells. Aly2 physically interacts in vivo with Rsp5 at its PY motif and also with Dip5, thus serving as an adaptor linking Rsp5 with Dip5 to achieve Dip5 ubiquitination. Importantly, the interaction between Aly2 and Dip5 is accelerated in response to elevated aspartic acid availability. This result indicates that the regulation of Dip5 endocytosis is accomplished by dynamic recruitment of Rsp5 via Aly2.


PROTEOMICS ◽  
2002 ◽  
Vol 2 (12) ◽  
pp. 1706-1714 ◽  
Author(s):  
Catherine Navarre ◽  
Hervé Degand ◽  
Keiryn L. Bennett ◽  
Janne S. Crawford ◽  
Ejvind Mørtz ◽  
...  

2014 ◽  
Vol 13 (9) ◽  
pp. 1191-1199 ◽  
Author(s):  
Takeki Shiga ◽  
Nobuyuki Yoshida ◽  
Yuko Shimizu ◽  
Etsuko Suzuki ◽  
Toshiya Sasaki ◽  
...  

ABSTRACTInSaccharomyces cerevisiae, when a rich nitrogen source such as ammonium is added to the culture medium, the general amino acid permease Gap1p is ubiquitinated by the yeast Nedd4-like ubiquitin ligase Rsp5p, followed by its endocytosis to the vacuole. The arrestin-like Bul1/2p adaptors for Rsp5p specifically mediate this process. In this study, to investigate the downregulation of Gap1p in response to environmental stresses, we determined the intracellular trafficking of Gap1p under various stress conditions. An increase in the extracellular ethanol concentration induced ubiquitination and trafficking of Gap1p from the plasma membrane to the vacuole in wild-type cells, whereas Gap1p remained stable on the plasma membrane under the same conditions inrsp5A401Eand Δend3cells. A14C-labeled citrulline uptake assay using a nonubiquitinated form of Gap1p (Gap1pK9R/K16R) revealed that ethanol stress caused a dramatic decrease of Gap1p activity. These results suggest that Gap1p is inactivated and ubiquitinated by Rsp5p for endocytosis whenS. cerevisiaecells are exposed to a high concentration of ethanol. It is noteworthy that this endocytosis occurs in a Bul1/2p-independent manner, whereas ammonium-triggered downregulation of Gap1p was almost completely inhibited in Δbul1/2cells. We also found that other environmental stresses, such as high temperature, H2O2, and LiCl, also promoted endocytosis of Gap1p. Similar intracellular trafficking caused by ethanol occurred in other plasma membrane proteins (Agp1p, Tat2p, and Gnp1p). Our findings suggest that stress-induced quality control is a common process requiring Rsp5p for plasma membrane proteins in yeast.


1993 ◽  
Vol 120 (5) ◽  
pp. 1203-1215 ◽  
Author(s):  
K Kuchler ◽  
H G Dohlman ◽  
J Thorner

STE6 gene product is required for secretion of the lipopeptide mating pheromone a-factor by Saccharomyces cerevisiae MATa cells. Radiolabeling and immunoprecipitation, either with specific polyclonal antibodies raised against a TrpE-Ste6 fusion protein or with mAbs that recognize c-myc epitopes in fully functional epitope-tagged Ste6 derivatives, demonstrated that Ste6 is a 145-kD phosphoprotein. Subcellular fractionation, various extraction procedures, and immunoblotting showed that Ste6 is an intrinsic plasma membrane-associated protein. The apparent molecular weight of Ste6 was unaffected by tunicamycin treatment, and the radiolabeled protein did not bind to concanavalin A, indicating that Ste6 is not glycosylated and that glycosylation is not required either for its membrane delivery or its function. The amino acid sequence of Ste6 predicts two ATP-binding folds; correspondingly, Ste6 was photoaffinity-labeled specifically with 8-azido-[alpha-32P]ATP. Indirect immunofluorescence revealed that in exponentially growing MATa cells, the majority of Ste6 showed a patchy distribution within the plasma membrane, but a significant fraction was found concentrated in a number of vesicle-like bodies subtending the plasma membrane. In contrast, in MATa cells exposed to the mating pheromone alpha-factor, which markedly induced Ste6 production, the majority of Ste6 was incorporated into the plasma membrane within the growing tip of the elongating cells. The highly localized insertion of this transporter may establish pronounced anisotropy in a-factor secretion from the MATa cell, and thereby may contribute to the establishment of the cell polarity which restricts partner selection and cell fusion during mating to one MAT alpha cell.


Contact ◽  
2018 ◽  
Vol 1 ◽  
pp. 251525641876404
Author(s):  
Non Miyata ◽  
Osamu Kuge

Maintenance of the cardiolipin (CL) level largely depends on Ups1-Mdm35 complex-mediated intramitochondrial phosphatidic acid transfer. In addition, the presence of an alternative CL accumulation pathway has been suggested in the yeast Saccharomyces cerevisiae. This pathway is independent of the Ups1-Mdm35 complex and stimulated by loss of Ups2, which forms a complex with Mdm35 and mediates intramitochondrial transfer of phosphatidylserine for phosphatidylethanolamine synthesis. Recently, we found that the alternative CL accumulation pathway is enhanced by a lowered phosphatidylethanolamine level, not by loss of Ups2 per se, and depends on three mitochondrial inner membrane proteins, Fmp30, Mdm31, and Mdm32.


2016 ◽  
Vol 44 (2) ◽  
pp. 474-478 ◽  
Author(s):  
Chris MacDonald ◽  
Robert C. Piper

Sorting internalized proteins and lipids back to the cell surface controls the supply of molecules throughout the cell and regulates integral membrane protein activity at the surface. One central process in mammalian cells is the transit of cargo from endosomes back to the plasma membrane (PM) directly, along a route that bypasses retrograde movement to the Golgi. Despite recognition of this pathway for decades we are only beginning to understand the machinery controlling this overall process. The budding yeast Saccharomyces cerevisiae, a stalwart genetic system, has been routinely used to identify fundamental proteins and their modes of action in conserved trafficking pathways. However, the study of cell surface recycling from endosomes in yeast is hampered by difficulties that obscure visualization of the pathway. Here we briefly discuss how recycling is likely a more prevalent process in yeast than is widely appreciated and how tools might be built to better study the pathway.


FEBS Journal ◽  
2009 ◽  
Vol 276 (6) ◽  
pp. 1698-1708 ◽  
Author(s):  
Silke Grunau ◽  
Sabrina Mindthoff ◽  
Hanspeter Rottensteiner ◽  
Raija T. Sormunen ◽  
J. Kalervo Hiltunen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document