scholarly journals Anti-tumor efficacy of an MMAE conjugated antibody targeting cell surface TACE/ADAM17-cleaved Amphiregulin in breast cancer

2021 ◽  
Author(s):  
Kristopher A Lofgren ◽  
Sreeja Sreekumar ◽  
E Charles Jenkins Jr ◽  
Kyle J Ernzen ◽  
Paraic A Kenny

Abstract Background The Epidermal Growth Factor Receptor ligand, Amphiregulin, is a key proliferative effector of estrogen receptor signaling in breast cancer and also plays a role in other malignancies. Amphiregulin is a single-pass transmembrane protein proteolytically processed by TACE/ADAM17 to release the soluble EGFR ligand, leaving a residual transmembrane stalk that is subsequently internalized. Methods Using phage display we identified antibodies that selectively recognize the residual transmembrane stalk of cleaved Amphiregulin. Conjugation with fluorescence labels and monomethyl auristatin E (MMAE) was used to study their intracellular trafficking and anti-cancer effects, respectively. Results We report the development of an antibody drug conjugate, GMF-1A3-MMAE, targeting an AREG neo-epitope revealed following ADAM17-mediated cleavage. The antibody does not interact with uncleaved Amphiregulin, providing a novel means of targeting cells with high rates of Amphiregulin shedding. Using fluorescent dye conjugation, we demonstrated that the antibody is internalized by cancer cells in a manner dependent on the presence of cell surface cleaved Amphiregulin. Antibodies conjugated with MMAE were cytotoxic in vitro and induced rapid regression of established breast tumor xenografts in immunocompromised mice. We further demonstrate that these antibodies recognize the Amphiregulin neo-epitope in formalin fixed paraffin embedded tumor tissue, suggesting their utility as a companion diagnostic for patient selection. Conclusions This ADC targeting Amphiregulin has potential utility in the treatment of breast and other tumors in which proteolytic Amphiregulin shedding is a frequent event.

2021 ◽  
Author(s):  
Kristopher A Lofgren ◽  
Sreeja Sreekumar ◽  
E Charles Jenkins ◽  
Kyle J Ernzen ◽  
Paraic A Kenny

The Epidermal Growth Factor Receptor ligand, Amphiregulin, is a key proliferative effector of estrogen receptor signaling in breast cancer and also plays a role in other malignancies. Amphiregulin is a single-pass transmembrane protein proteolytically processed by TACE/ADAM17 to release the soluble EGFR ligand, leaving a residual transmembrane stalk that is subsequently internalized. Here, we report the development of an antibody drug conjugate, GMF-1A3-MMAE, targeting an AREG neo-epitope revealed following ADAM17-mediated cleavage. The antibody does not interact with uncleaved Amphiregulin, providing a novel means of targeting cells with high rates of Amphiregulin shedding. Using fluorescent dye conjugation, we demonstrated that the antibody is internalized by cancer cells in a manner dependent on the presence of cell surface cleaved Amphiregulin. Antibodies conjugated with monomethyl auristatin E (MMAE) were cytotoxic in vitro and induced rapid regression of established breast tumor xenografts in immunocompromised mice. We further demonstrate that these antibodies recognize the Amphiregulin neo-epitope in formalin fixed paraffin embedded tumor tissue, suggesting their utility as a companion diagnostic for patient selection.


2020 ◽  
Vol 22 (11) ◽  
pp. 1625-1636 ◽  
Author(s):  
Brunilde Gril ◽  
Debbie Wei ◽  
Alexandra S Zimmer ◽  
Christina Robinson ◽  
Imran Khan ◽  
...  

Abstract Background Brain metastases of HER2+ breast cancer persist as a clinical challenge. Many therapeutics directed at human epidermal growth factor receptor 2 (HER2) are antibodies or antibody-drug conjugates (ADCs), and their permeability through the blood–tumor barrier (BTB) is poorly understood. We investigated the efficacy of a biparatopic anti-HER2 antibody-tubulysin conjugate (bHER2-ATC) in preclinical models of brain metastases. Methods The compound was evaluated in 2 hematogenous HER2+ brain metastasis mouse models, SUM190-BR and JIMT-1-BR. Endpoints included metastasis count, compound brain penetration, cancer cell proliferation, and apoptosis. Results Biparatopic HER2-ATC 3 mg/kg prevented metastasis outgrowth in the JIMT-1-BR model. At 1 mg/kg bHER2-ATC, a 70% and 92% reduction in large and micrometastases was observed. For the SUM190-BR model, an 85% and 53% reduction, respectively, in large and micrometastases was observed at 3 mg/kg, without statistical significance. Proliferation was reduced in both models at the highest dose. At the endpoint, bHER2-ATC uptake covered a median of 4–6% and 7–17% of metastasis area in the JIMT-1-BR and SUM190-BR models, respectively. Maximal compound uptake in the models was 19% and 86% in JIMT-1-BR and SUM190-BR, respectively. Multiple lesions in both models demonstrated ADC uptake in the absence or low diffusion of Texas Red Dextran, a marker of paracellular permeability. Using in vitro BTB assays, the ADC was endocytosed into brain endothelial cells, identifying a potentially new mechanism of antibody permeability. Conclusions Biparatopic HER2-ATC significantly prevented JIMT-1-BR brain metastasis outgrowth and showed activity in the SUM190-BR model. The bHER2-ATC penetration into metastases that are impermeable to fluorescent dye suggested an endocytic mechanism of brain penetration.


Author(s):  
Fatemah Bahman ◽  
Valeria Pittalà ◽  
Mohamed Haider ◽  
Khaled Greish

Triple negative breast cancer (TNBC) is the most aggressive breast cancer accounting for around 15% of identified breast cancer cases. TNBC, by lacking estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), is unresponsive to current targeted therapies. Existing treatment relies on chemotherapeutic treatment but, despite an initial response to chemotherapy, the inception of resistance and relapse is unfortunately common. Dasatinib is an approved second-generation inhibitor of multiple tyrosine kinases and literature data strongly support its use in the management of TNBC. However, dasatinib binds to plasma proteins and undergoes extensive metabolism through oxidation and conjugation. To protect dasatinib from fast pharmacokinetic degradation and to prolong its activity, it was encapsulated on poly(styrene-co-maleic acid) (SMA) micelles. The obtained SMA-dasatinib nanoparticles (NPs) were evaluated for their physicochemical properties, in vitro antiproliferative activity in different TNBC cell lines, and in vivo anticancer activity in a syngeneic model of breast cancer. Obtained results showed that SMA-dasatinib is more potent against 4T1 TNBC tumor growth in vivo compared to free drug. This enhanced effect was ascribed to the encapsulation of the drug protecting it from a rapid metabolism. Our finding highlights the often-overlooked value of nanoformulations in protecting its cargo from degradation. Overall, results may provide an alternative therapeutic strategy for TNBC management.


Nanomaterials ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 632 ◽  
Author(s):  
Łucja Dziawer ◽  
Agnieszka Majkowska-Pilip ◽  
Damian Gaweł ◽  
Marlena Godlewska ◽  
Marek Pruszyński ◽  
...  

Highly localized radiotherapy with radionuclides is a commonly used treatment modality for patients with unresectable solid tumors. Herein, we propose a novel α-nanobrachytherapy approach for selective therapy of human epidermal growth factor receptor 2 (HER2)-positive breast cancer. This uses local intratumoral injection of 5-nm-diameter gold nanoparticles (AuNPs) labeled with an α-emitter (211At), modified with polyethylene glycol (PEG) chains and attached to HER2-specific monoclonal antibody (trastuzumab). The size, shape, morphology, and zeta potential of the 5 nm synthesized AuNPs were characterized by TEM (Transmission Electron Microscopy) and DLS (Dynamic Light Scattering) techniques. The gold nanoparticle surface was modified by PEG and subsequently used for antibody immobilization. Utilizing the high affinity of gold for heavy halogens, the bioconjugate was labelled with 211At obtained by α irradiation of the bismuth target. The labeling yield of 211At was greater than 99%. 211At bioconjugates were stable in human serum. Additionally, in vitro biological studies indicated that 211At-AuNP-PEG-trastuzumab exhibited higher affinity and cytotoxicity towards the HER2-overexpressing human ovarian SKOV-3 cell line than unmodified nanoparticles. Confocal and dark field microscopy studies revealed that 211At-AuNP-PEG-trastuzumab was effectively internalized and deposited near the nucleus. These findings show promising potential for the 211At-AuNP-PEG-trastuzumab radiobioconjugate as a perspective therapeutic agent in the treatment of unresectable solid cancers expressing HER2 receptors.


2011 ◽  
Vol 29 (4) ◽  
pp. 398-405 ◽  
Author(s):  
Howard A. Burris ◽  
Hope S. Rugo ◽  
Svetislava J. Vukelja ◽  
Charles L. Vogel ◽  
Rachel A. Borson ◽  
...  

Purpose The antibody-drug conjugate trastuzumab-DM1 (T-DM1) combines the biologic activity of trastuzumab with targeted delivery of a potent antimicrotubule agent, DM1, to human epidermal growth factor receptor 2 (HER2) –overexpressing cancer cells. Based on results from a phase I study that showed T-DM1 was well tolerated at the maximum-tolerated dose of 3.6 mg/kg every 3 weeks, with evidence of efficacy, in patients with HER2-positive metastatic breast cancer (MBC) who were previously treated with trastuzumab, we conducted a phase II study to further define the safety and efficacy of T-DM1 in this patient population. Patients and Methods This report describes a single-arm phase II study (TDM4258g) that assessed efficacy and safety of intravenous T-DM1 (3.6 mg/kg every 3 weeks) in patients with HER2-positive MBC who had tumor progression after prior treatment with HER2-directed therapy and who had received prior chemotherapy. Results With a follow-up of ≥ 12 months among 112 treated patients, the objective response rate by independent assessment was 25.9% (95% CI, 18.4% to 34.4%). Median duration of response was not reached as a result of insufficient events (lower limit of 95% CI, 6.2 months), and median progression-free survival time was 4.6 months (95% CI, 3.9 to 8.6 months). The response rates were higher among patients with confirmed HER2-positive tumors (immunohistochemistry 3+ or fluorescent in situ hybridization positive) by retrospective central testing (n = 74). Higher response rates were also observed in patients whose tumors expressed ≥ median HER2 levels by quantitative reverse transcriptase polymerase chain reaction for HER2 expression, compared with patients who had less than median HER2 levels. T-DM1 was well tolerated with no dose-limiting cardiotoxicity. Most adverse events (AEs) were grade 1 or 2; the most frequent grade ≥ 3 AEs were hypokalemia (8.9%), thrombocytopenia (8.0%), and fatigue (4.5%). Conclusion T-DM1 has robust single-agent activity in patients with heavily pretreated, HER2-positive MBC and is well tolerated at the recommended phase II dose.


2018 ◽  
Vol 17 (5) ◽  
pp. 0-10
Author(s):  
Marion Lepelley ◽  
Marion Allouchery ◽  
Jérôme Long ◽  
Dorothée Boucherle ◽  
Yves Ranchoup ◽  
...  

Trastuzumab is a monoclonal antibody targeted against the Human Epidermal Growth Factor Receptor 2 (HER2) overexpressed in some breast cancer. This targeted therapy significantly improves the prognosis of these cancers. Recently an anti-HER2 antibodydrug conjugate was shaped in order to facilitate the targeted delivery of potent cytotoxic drug to cancer cells and to reduce resistance. This formulation, called trastuzumab emtansine (T-DM1), consists of the monoclonal antibody trastuzumab linked to a cytotoxic drug (a derivative of maytansine) via a chemical linker. Little is known about adverse reactions due to this new formulation. Herein we described the case of a woman suffering from a HER2-positive breast cancer, treated with trastuzumab for 30 months followed by T-DM1 monotherapy. After 12 months of T-DM1 treatment, a nodular regenerative hyperplasia confirmed by liver biopsy occurred. T-DM1 was stopped and medical imagery showed a resolution of the nodular regenerative hyperplasia. Unfortunately, hepatic metastasis progressed. Few cases of nodular regenerative hyperplasia induced by T-DM1 have been described so far. Further studies are needed to explore pathogenesis of nodular regenerative hyperplasia with this new antibody-drug conjugate treatment.


2014 ◽  
Vol 32 (32) ◽  
pp. 3619-3625 ◽  
Author(s):  
Johanna Bendell ◽  
Mansoor Saleh ◽  
April A.N. Rose ◽  
Peter M. Siegel ◽  
Lowell Hart ◽  
...  

Purpose Glycoprotein NMB (gpNMB), a novel transmembrane protein overexpressed in 40% to 60% of breast cancers, promotes metastases in animal models and is a prognostic marker of a poor outcome in patients. The antibody-drug conjugate glembatumumab vedotin consists of a fully human anti-gpNMB monoclonal antibody, conjugated via a cleavable linker to monomethyl auristatin E. Glembatumumab vedotin is generally well tolerated, with observed objective responses in advanced melanoma. This is, to our knowledge, the first study of glembatumumab vedotin in breast cancer. Patients and Methods Eligible patients had advanced/metastatic breast cancer with at least two prior chemotherapy regimens, including taxane, anthracycline, and capecitabine. A standard 3+3 dose escalation was followed by a phase II expansion. Immunohistochemistry for gpNMB was performed retrospectively for patients with available tumor tissue. Results Forty-two patients were enrolled. Dose-limiting toxicity (DLT) consisted of worsening neuropathy at 1.34 mg/kg. After excluding patients with baseline neuropathy more than grade 1, no DLT occurred through 1.88 mg/kg (the phase II dose). The phase II primary activity end point was met (12-week progression-free survival [PFS12] = 9 of 27 patients; 33%). Sixteen of 19 (84%) patients tested had gpNMB-positive tumors. At the phase II dose, median PFS was 9.1 weeks for all patients, 17.9 weeks for patients with triple-negative breast cancer (TNBC), and 18.0 weeks for patients with gpNMB-positive tumors. Two patients had confirmed partial responses; both had gpNMB-positive tumors and one had TNBC. Conclusion Glembatumumab vedotin has an acceptable safety profile. Preliminary evidence of activity in treatment-resistant metastatic breast cancer requires confirmation, such as the phase II randomized trial (EMERGE) that also examines the relationship between activity and gpNMB distribution/intensity.


2009 ◽  
Vol 1237 ◽  
Author(s):  
Zoraida Pascual Aguilar ◽  
Hengyi Xu ◽  
Ben Jones ◽  
John Dixon ◽  
Andrew Wang

AbstractNanotechnology is currently undergoing unprecedented development in various fields. There has been a widespread interest in the application of nanomaterials in medicine with its promise of improving imaging, diagnostics, and therapy. The recent advances in engineering and technology have led to the development of new nanoscale platforms such as quantum dots, gold nanocrystals, superparamagnetic nanocrystals, and other semiconductor nanoparticles. Literature on the applications of quantum dots in life sciences has recently increased in number. This may have led to predictions that nanotechnology in life sciences research will contribute $3.4 billion by 2010 while institutions have predicted that the market for nanotechnology and corresponding products will reach $1 trillion in 2012 (1).Ocean NanoTech is at the height of developmental stages of nanoparticle production for biological applications. Ocean’s high quantum-yield quantum dots (QDs) is currently being tested and used for cell imaging, as wells as for the detection of proteins, DNA, whole cells, and whole organisms. Imaging of cells involves conjugation of QDs to highly sensitive and specific antibody to form QD˜Ab conjugates that attach to specific protein target on the cell surface. Attachment of the QD˜Ab on the cell surface allows imaging of the cell under a fluorescence microscope. QD based imaging can be used in a multiplex immunoassay detection of several types of cells (or microorganisms) in a single sample when several size tunable quantum dots are used as reporter probes.We report the QD imaging of breast cancer cells. Using the breast cancer cell line SK-BR3, which expresses high levels of her2 antigens on the cell surface, anti-her2 were conjugated to Ocean’s quantum dots, QSH620. To eliminate non-specific binding of the QD˜20Ab Ocean’s super blocking buffer BBB and BBG were used. Preliminary results of in vitro studies indicated that QD based systems can be used to image cells. We anticipate that this system can be transferred to in vivo detection.


Sign in / Sign up

Export Citation Format

Share Document