Estimating Aboveground Net Primary Production in Grassland- and Herbaceous-Dominated Ecosystems

Author(s):  
Alan K. Knapp ◽  
John M. Briggs ◽  
Daniel L. Childers ◽  
Osvaldo E. Sala
2020 ◽  
Author(s):  
Jake D. Graham

Northern peatlands are a major terrestrial carbon (C) store, with an annual sink of 0.1 Pg C yr-1 and a total storage estimate of 547 Pg C. Northern peatlands are also major contributors of atmospheric methane, a potent greenhouse gas. The microtopography of peatlands helps modulate peatland carbon fluxes; however, there is a lack of quantitative characterizations of microtopography in the literature. The lack of formalized schemes to characterize microtopography makes comparisons between studies difficult. Further, many land surface models do not accurately simulate peatland C emissions, in part because they do not adequately represent peatland microtopography and hydrology. The C balance of peatlands is determined by differences in C influxes and effluxes, with the largest being net primary production and heterotrophic respiration, respectively. Tree net primary production at a treed bog in northern Minnesota represented about 13% of C inputs to the peatland, and marks tree aboveground net primary production (ANPP) as an important pathway for C to enter peatlands. Tree species Picea mariana (Black spruce) and Larix Laricina (Tamarack) are typically found in wooded peatlands in North America, and are widely distributed in the North American boreal zone. Therefore, understanding how these species will respond to environmental change is needed to make predictions of peatland C budgets in the future. As the climate warms, peatlands are expected to increase C release to the atmosphere, resulting in a positive feedback loop. Further, climate warming is expected to occur faster in northern latitudes compared to the rest of the globe. The Spruce and Peatland Responses Under Changing Environments (SPRUCE; https://mnspruce.ornl.gov/) manipulates temperature and CO2 concentrations to evaluate the in-situ response of a peatland to environmental change and is located in Minnesota, USA. In this dissertation, I documented surface roughness metrics for peatland microtopography in SPRUCE plots and developed three explicit methods for classifying frequently used microtopographic classes (microforms) for different scientific applications. Subsequently I used one of these characterizations to perform a sensitivity analysis and improve the parameterization of microtopography in a land surface model that was calibrated at the SPRUCE site. The modeled outputs of C from the analyses ranged from 0.8-34.8% when microtopographical parameters were allowed to vary within observed ranges. Further, C related outputs when using our data-driven parameterization differed from outputs when using the default parameterization by -7.9 - 12.2%. Finally, I utilized TLS point clouds to assess the effect elevated temperature and CO2 concentrations had on P. mariana and L. laricina after the first four years of SPRUCE treatments. I observed that P. mariana growth (aboveground net primary production) had a negative response to temperature initially, but the relationship became less pronounced through time. Conversely, L. laricina had no growth response to temperature initially, but developed a positive relationship through time. The divergent growth responses of P. mariana and L. laricina resulted in no detectable change in aboveground net primary production at the community level. Results from this dissertation help improve how peatland microtopography is represented, and improves understanding of how peatland tree growth will respond to environmental change in the future.


Trees ◽  
2000 ◽  
Vol 14 (7) ◽  
pp. 415-421 ◽  
Author(s):  
J. Oleksyn ◽  
P.B. Reich ◽  
L. Rachwal ◽  
M.G. Tjoelker ◽  
P. Karolewski

2011 ◽  
Vol 8 (8) ◽  
pp. 2099-2106 ◽  
Author(s):  
Y. Wang ◽  
J. Y. Fang ◽  
T. Kato ◽  
Z. D. Guo ◽  
B. Zhu ◽  
...  

Abstract. Recent studies based on remote sensing and carbon process models have revealed that terrestrial net primary production (NPP) in the middle and high latitudes of the Northern Hemisphere has increased significantly; this is crucial for explaining the increased terrestrial carbon sink in the past several decades. Regional NPP estimation based on significant field data, however, has been rare. In this study, we estimated the long-term changes in aboveground NPP (ANPP) for Japan's forests from 1980 to 2005 using forest inventory data, direct field measurements, and an allometric method. The overall ANPP for all forest types averaged 10.5 Mg ha−1 yr−1, with a range of 9.6 to 11.5 Mg ha−1 yr−1, and ANPP for the whole country totaled 249.1 Tg yr−1 (range: 230.0 to 271.4 Tg yr−1) during the study period. Over the 25 years, the net effect of increased ANPP in needle-leaf forests and decreased ANPP in broadleaf forests has led to an increase of 1.9 Mg ha−1 yr−1 (i.e., 0.79 % yr−1). This increase may be mainly due to the establishment of plantations and the rapid early growth of these planted forests.


1981 ◽  
Vol 59 (12) ◽  
pp. 2635-2649 ◽  
Author(s):  
Charles C. Grier ◽  
T. M. Ballard

Biomass and nutrient distribution and aboveground net primary production were determined for two communities growing at 1600 m elevation and five communities growing at about 2000 m elevation in the alpine zone of the Kluane Ranges, Yukon Territory, Canada. Living biomass accumulations ranged from 183 to 1350 g/m2, whereas total organic matter accumulations ranged from 2126 to 51120 g/m2. Nutrient distribution in general reflected organic matter distribution. Highest nutrient concentrations were in leaves and fine roots. Aboveground net primary production ranged from 18.3 to 185.5 g/m2. Primary production appeared to be related most to moisture during the growing season and temperature regimes.


Ecosphere ◽  
2016 ◽  
Vol 7 (9) ◽  
pp. e01454 ◽  
Author(s):  
Alex Dye ◽  
Audrey Barker Plotkin ◽  
Daniel Bishop ◽  
Neil Pederson ◽  
Benjamin Poulter ◽  
...  

2016 ◽  
Author(s):  
Jian Sun

Although the relationship between the aboveground net primary production (ANPP) and speciesdiversity (SR) have been widely reported, there is considerable disagreement about the fitting patterns of SR–ANPP, which has been variously described as ‘positive’, ‘negative’, ‘unimodal’, ‘U-shaped’ and so on. Not surprisingly, the effect-factors including precipitation, aridity index and geographic conditions (e.g.,altitude, longitude and latitude) on ANPP and SR continue to interest researchers, especially the effects at high altitude regions. We investigated ANPP and SR from 113 sampled sites (399 plots) across alpine meadow and steppe in the Tibetan Plateau, which included Tibet, Qinghai and Sichuan province. The effects of various environmental factors (precipitation, temperature, aridity index, altitude, longitude,latitude and vegetation type on SR and ANPP) were explored. The results indicate that a unimodal pattern was confirmed between ANPP and SR in alpine steppe (R 2 =0.45, P <0.0001), alpine meadow ( R 2 =0.4, P <0.0001), and all samples across alpine grassland ( R 2 =0.52, P <0.0001). For the aboveground net primary production, the appropriate precipitation and aridity is 600mm and 42, respectively. Under thesame moisture conditions, the maximum value of diversity is 0.75. Longitude ( R 2 =0.69, P <0.0001) and altitude ( R 2 =0.48, P <0.0001) have positive and negative effects on aboveground net primary production, and a similar relationship exists with diversity ( R 2 =0.44, P <0.0001 and R 2 =0.3, P <0.0001).The same patterns of diversity and production responding to precipitation and the aridity index were evident in alpine steppe and meadow, and a unimodal pattern was confirmed between ANPP and SR in both locations.


Sign in / Sign up

Export Citation Format

Share Document