The perturbative expansion of tensor models

2016 ◽  
pp. 155-174
Author(s):  
Razvan Gurau
2021 ◽  
pp. 291-330
Author(s):  
Adrian Tanasa

In this chapter we analyse in detail the diagrammatics of various Sachdev–Ye–Kitaev-like tensor models: the Gurau–Witten model (in the first section), and the multi-orientable and O(N)3-invariant tensor models, in the rest of the chapter. Various explicit graph theoretical techniques are used. The Feynman graphs obtained through perturbative expansion are stranded graphs where each strand represents the propagation of an index nij, alternating stranded edges of colours i and j. However, it is important to emphasize here that since no twists among the strands are allowed, one can easily represent the Feynman tensor graphs as standard Feynman graphs with additional colours on the edges.


2021 ◽  
pp. 234-259
Author(s):  
Adrian Tanasa

We define in this chapter a class of tensor models endowed with O(N)3-invariance, N being again the size of the tensor. This allows to generate, via the usual QFT perturbative expansion, a class of Feynman tensor graphs which is strictly larger than the class of Feynman graphs of both the multi-orientable model and the U(N)3-invariant models treated in the previous two chapters. We first exhibit the existence of a large N expansion for such a model with general interactions (non-necessary quartic). We then focus on the quartic model and we identify the leading order and next-to-leading Feynman graphs of the large N expansion. Finally, we prove the existence of a critical regime and we compute the so-called critical exponents. This is achieved through the use of various analytic combinatorics techniques.


2017 ◽  
Vol 2017 (9) ◽  
Author(s):  
Robert de Mello Koch ◽  
David Gossman ◽  
Laila Tribelhorn
Keyword(s):  

2003 ◽  
Vol 18 (30) ◽  
pp. 5475-5519 ◽  
Author(s):  
A. V. NESTERENKO

This paper gives an overview of recently developed model for the QCD analytic invariant charge. Its underlying idea is to bring the analyticity condition, which follows from the general principles of local Quantum Field Theory, in perturbative approach to renormalization group (RG) method. The concrete realization of the latter consists in explicit imposition of analyticity requirement on the perturbative expansion of β function for the strong running coupling, with subsequent solution of the corresponding RG equation. In turn, this allows one to avoid the known difficulties originated in perturbative approximation of the RG functions. Ultimately, the proposed approach results in qualitatively new properties of the QCD invariant charge. The latter enables one to describe a wide range of the strong interaction processes both of perturbative and intrinsically nonperturbative nature.


2009 ◽  
Vol 23 (14) ◽  
pp. 3159-3177
Author(s):  
CARLOS E. REPETTO ◽  
OSCAR P. ZANDRON

By using the Hubbard [Formula: see text]-operators as field variables along with the supersymmetric version of the Faddeev–Jackiw symplectic formalism, a family of first-order constrained Lagrangians for the t-J model is found. In order to satisfy the Hubbard [Formula: see text]-operator commutation rules satisfying the graded algebra spl(2,1), the number and kind of constraints that must be included in a classical first-order Lagrangian formalism for this model are presented. The model is also analyzed via path-integral formalism, where the correlation-generating functional and the effective Lagrangian are constructed. In this context, the introduction of a proper ghost field is needed to render the model renormalizable. The perturbative Lagrangian formalism is developed and it is shown how propagators and vertices can be renormalized to each order. In particular, the renormalized ferromagnetic magnon propagator arising in the present formalism is discussed. As an example, the thermal softening of the magnon frequency is computed.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Dario Benedetti

Abstract We prove the instability of d-dimensional conformal field theories (CFTs) having in the operator-product expansion of two fundamental fields a primary operator of scaling dimension h = $$ \frac{d}{2} $$ d 2 + i r, with non-vanishing r ∈ ℝ. From an AdS/CFT point of view, this corresponds to a well-known tachyonic instability, associated to a violation of the Breitenlohner-Freedman bound in AdSd+1; we derive it here directly for generic d-dimensional CFTs that can be obtained as limits of multiscalar quantum field theories, by applying the harmonic analysis for the Euclidean conformal group to perturbations of the conformal solution in the two-particle irreducible (2PI) effective action. Some explicit examples are discussed, such as melonic tensor models and the biscalar fishnet model.


Sign in / Sign up

Export Citation Format

Share Document