Simulation of images and electron diffraction patterns

Author(s):  
Xiaodong Zou ◽  
Sven Hovmöller ◽  
Peter Oleynikov
Author(s):  
J. S. Lally ◽  
R. J. Lee

In the 50 year period since the discovery of electron diffraction from crystals there has been much theoretical effort devoted to the calculation of diffracted intensities as a function of crystal thickness, orientation, and structure. However, in many applications of electron diffraction what is required is a simple identification of an unknown structure when some of the shape and orientation parameters required for intensity calculations are not known. In these circumstances an automated method is needed to solve diffraction patterns obtained near crystal zone axis directions that includes the effects of systematic absences of reflections due to lattice symmetry effects and additional reflections due to double diffraction processes.Two programs have been developed to enable relatively inexperienced microscopists to identify unknown crystals from diffraction patterns. Before indexing any given electron diffraction pattern, a set of possible crystal structures must be selected for comparison against the unknown.


Author(s):  
D.T. Grubb

Diffraction studies in polymeric and other beam sensitive materials may bring to mind the many experiments where diffracted intensity has been used as a measure of the electron dose required to destroy fine structure in the TEM. But this paper is concerned with a range of cases where the diffraction pattern itself contains the important information.In the first case, electron diffraction from paraffins, degraded polyethylene and polyethylene single crystals, all the samples are highly ordered, and their crystallographic structure is well known. The diffraction patterns fade on irradiation and may also change considerably in a-spacing, increasing the unit cell volume on irradiation. The effect is large and continuous far C94H190 paraffin and for PE, while for shorter chains to C 28H58 the change is less, levelling off at high dose, Fig.l. It is also found that the change in a-spacing increases at higher dose rates and at higher irradiation temperatures.


Author(s):  
R.P. Goehner ◽  
W.T. Hatfield ◽  
Prakash Rao

Computer programs are now available in various laboratories for the indexing and simulation of transmission electron diffraction patterns. Although these programs address themselves to the solution of various aspects of the indexing and simulation process, the ultimate goal is to perform real time diffraction pattern analysis directly off of the imaging screen of the transmission electron microscope. The program to be described in this paper represents one step prior to real time analysis. It involves the combination of two programs, described in an earlier paper(l), into a single program for use on an interactive basis with a minicomputer. In our case, the minicomputer is an INTERDATA 70 equipped with a Tektronix 4010-1 graphical display terminal and hard copy unit.A simplified flow diagram of the combined program, written in Fortran IV, is shown in Figure 1. It consists of two programs INDEX and TEDP which index and simulate electron diffraction patterns respectively. The user has the option of choosing either the indexing or simulating aspects of the combined program.


Author(s):  
S. McKernan ◽  
C. B. Carter ◽  
D. Bour ◽  
J. R. Shealy

The growth of ternary III-V semiconductors by organo-metallic vapor phase epitaxy (OMVPE) is widely practiced. It has been generally assumed that the resulting structure is the same as that of the corresponding binary semiconductors, but with the two different cation or anion species randomly distributed on their appropriate sublattice sites. Recently several different ternary semiconductors including AlxGa1-xAs, Gaxln-1-xAs and Gaxln1-xP1-6 have been observed in ordered states. A common feature of these ordered compounds is that they contain a relatively high density of defects. This is evident in electron diffraction patterns from these materials where streaks, which are typically parallel to the growth direction, are associated with the extra reflections arising from the ordering. However, where the (Ga,ln)P epilayer is reasonably well ordered the streaking is extremely faint, and the intensity of the ordered spot at 1/2(111) is much greater than that at 1/2(111). In these cases it is possible to image relatively clearly many of the defects found in the ordered structure.


Author(s):  
N. Uyeda ◽  
E. J. Kirkland ◽  
B. M. Siegel

The direct observation of structural change by high resolution electron microscopy will be essential for the better understanding of the damage process and its mechanism. However, this approach still involves some difficulty in quantitative interpretation mostly being due to the quality of obtained images. Electron diffraction, using crystalline specimens, has been the method most frequently applied to obtain a comparison of radiation sensitivity of various materials on the quantitative base. If a series of single crystal patterns are obtained the fading rate of reflections during the damage process give good comparative measures. The electron diffraction patterns also render useful information concerning the structural changes in the crystal. In the present work, the radiation damage of potassium tetracyano-platinate was dealt with on the basis two dimensional observation of fading rates of diffraction spots. KCP is known as an ionic crystal which possesses “one dimensional” electronic properties and it would be of great interest to know if radiation damage proceeds in a strongly asymmetric manner.


Author(s):  
John F. Mansfield

One of the most important advancements of the transmission electron microscopy (TEM) in recent years has been the development of the analytical electron microscope (AEM). The microanalytical capabilities of AEMs are based on the three major techniques that have been refined in the last decade or so, namely, Convergent Beam Electron Diffraction (CBED), X-ray Energy Dispersive Spectroscopy (XEDS) and Electron Energy Loss Spectroscopy (EELS). Each of these techniques can yield information on the specimen under study that is not obtainable by any other means. However, it is when they are used in concert that they are most powerful. The application of CBED in materials science is not restricted to microanalysis. However, this is the area where it is most frequently employed. It is used specifically to the identification of the lattice-type, point and space group of phases present within a sample. The addition of chemical/elemental information from XEDS or EELS spectra to the diffraction data usually allows unique identification of a phase.


Author(s):  
Jaap Brink ◽  
Wah Chiu

Crotoxin complex is the principal neurotoxin of the South American rattlesnake, Crotalus durissus terrificus and has a molecular weight of 24 kDa. The protein is a heterodimer with subunit A assigneda chaperone function. Subunit B carries the lethal activity, which is exerted on both sides ofthe neuro-muscular junction, and which is thought to involve binding to the acetylcholine receptor. Insight in crotoxin complex’ mode of action can be gained from a 3 Å resolution structure obtained by electron crystallography. This abstract communicates our progress in merging the electron diffraction amplitudes into a 3-dimensional (3D) intensity data set close to completion. Since the thickness of crotoxin complex crystals varies from one crystal to the other, we chose to collect tilt series of electron diffraction patterns after determining their thickness. Furthermore, by making use of the symmetry present in these tilt data, intensities collected only from similar crystals will be merged.Suitable crystals of glucose-embedded crotoxin complex were searched for in the defocussed diffraction mode with the goniometer tilted to 55° of higher in a JEOL4000 electron cryo-microscopc operated at 400 kV with the crystals kept at -120°C in a Gatan 626 cryo-holder. The crystal thickness was measured using the local contrast of the crystal relative to the supporting film from search-mode images acquired using a 1024 x 1024 slow-scan CCD camera (model 679, Gatan Inc.).


Author(s):  
Wah Chiu ◽  
Michael Sherman ◽  
Jaap Brink

In protein electron crystallography, both low dose electron diffraction patterns and images are needed to provide accurate amplitudes and phases respectively for a 3-dimensional reconstruction. We have demonstrated that the Gatan 1024x1024 model 679 slow-scan CCD camera is useful to record electron diffraction intensities of glucose-embedded crotoxin complex crystal to 3 Å resolution. The quality of the electron diffraction intensities is high on the basis of the measured intensity equivalence ofthe Friedel-related reflections. Moreover, the number of patterns recorded from a single crystal can be as high as 120 under the constraints of radiation damage and electron statistics for the reflections in each pattern.A limitation of the slow-scan CCD camera for recording electron images of protein crystal arises from the relatively large pixel size, i.e. 24 μm (provided by Gatan). The modulation transfer function of our camera with a P43 scintillator has been determined for 400 keV electrons and shows an amplitude fall-off to 0.25 at 1/60 μm−1.


Author(s):  
R. Herrera ◽  
A. Gómez

Computer simulations of electron diffraction patterns and images are an essential step in the process of structure and/or defect elucidation. So far most programs are designed to deal specifically with crystals, requiring frequently the space group as imput parameter. In such programs the deviations from perfect periodicity are dealt with by means of “periodic continuation”.However, for many applications involving amorphous materials, quasiperiodic materials or simply crystals with defects (including finite shape effects) it is convenient to have an algorithm capable of handling non-periodicity. Our program “HeGo” is an implementation of the well known multislice equations in which no periodicity assumption is made whatsoever. The salient features of our implementation are: 1) We made Gaussian fits to the atomic scattering factors for electrons covering the whole periodic table and the ranges [0-2]Å−1 and [2-6]Å−1.


Author(s):  
Pierre Moine

Qualitatively, amorphous structures can be easily revealed and differentiated from crystalline phases by their Transmission Electron Microscopy (TEM) images and their diffraction patterns (fig.1 and 2) but, for quantitative structural information, electron diffraction pattern intensity analyses are necessary. The parameters describing the structure of an amorphous specimen have been introduced in the context of scattering experiments which have been, so far, the most used techniques to obtain structural information in the form of statistical averages. When only small amorphous volumes (< 1/μm in size or thickness) are available, the much higher scattering of electrons (compared to neutrons or x rays) makes, despite its drawbacks, electron diffraction extremely valuable and often the only feasible technique.In a diffraction experiment, the intensity IN (Q) of a radiation, elastically scattered by N atoms of a sample, is measured and related to the atomic structure, using the fundamental relation (Born approximation) : IN(Q) = |FT[U(r)]|.


Sign in / Sign up

Export Citation Format

Share Document