1. Early navigational cultures

Author(s):  
Jim Bennett

Distinct geographies, where areas of sea were demarcated not only by land, but also by climate and current, helped to create different cultures of navigation that for centuries followed individual trajectories. ‘Early navigational cultures’ explains that the sky was one thing that was shared by ancient navigational cultures. It describes the techniques used by seamen in the Mediterranean, Pacific Ocean, Indian Ocean, and North Atlantic to register direction and position—the two fundamental variables of navigation. Before the use of a magnetic compass, navigation was also possible using other techniques such as coastal navigation (or pilotage), and a good understanding of tides, currents, swells, and behaviour of seabirds.

2011 ◽  
Vol 24 (23) ◽  
pp. 6100-6113 ◽  
Author(s):  
Jiacan Yuan ◽  
Steven B. Feldstein ◽  
Sukyoung Lee ◽  
Benkui Tan

Abstract Boreal winter jet variability over the North Atlantic is investigated using 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40) data, where the variability is defined by the first EOF of the zonal wind on seven vertical levels. The principal component time series of this EOF is referred to as the jet index. A pattern correlation analysis indicates that the jet index more accurately describes intraseasonal North Atlantic zonal wind variability than does the North Atlantic Oscillation (NAO). A series of composite calculations of the jet index based on events of intraseasonal convective precipitation over the tropical Indian and western Pacific Oceans reveals the following statistically significant relationships: 1) negative jet events lead enhanced Indian Ocean precipitation, 2) positive jet events lag enhanced Indian Ocean precipitation, 3) positive jet events lead enhanced western Pacific Ocean precipitation, and 4) negative jet events lag enhanced western Pacific Ocean precipitation. These intraseasonal relationships are found to be linked through the circumglobal teleconnection pattern (CTP). Implications of the sign of the CTP being opposite to that of the jet index suggest that relationships 1 and 3 may arise from cold air surges associated with the CTP over these oceans. On interdecadal time scales, a much greater increase in the frequency of precipitation events from 1958 to 1979 (P1) to 1980 to 2001 (P2) was found for the Indian Ocean relative to the western Pacific Ocean. This observation, combined with relationships 2 and 4, leads to the suggestion that this change in the frequency of intraseasonal Indian Ocean precipitation events may make an important contribution to the excitation of interdecadal variability of the North Atlantic jet.


Author(s):  
Alba Rey-Iglesia ◽  
Philippe Gaubert ◽  
Gonçalo Espregueira Themudo ◽  
Rosa Pires ◽  
Constanza De La Fuente ◽  
...  

Abstract The Mediterranean monk seal Monachus monachus is one of the most threatened marine mammals, with only 600–700 individuals restricted to three populations off the coast of Western Sahara and Madeira (North Atlantic) and between Greece and Turkey (eastern Mediterranean). Its original range was from the Black Sea (eastern Mediterranean) to Gambia (western African coast), but was drastically reduced by commercial hunting and human persecution since the early stages of marine exploitation. We here analyse 42 mitogenomes of Mediterranean monk seals, from across their present and historical geographic ranges to assess the species population dynamics over time. Our data show a decrease in genetic diversity in the last 200 years. Extant individuals presented an almost four-fold reduction in genetic diversity when compared to historical specimens. We also detect, for the first time, a clear segregation between the two North Atlantic populations, Madeira and Cabo Blanco, regardless of their geographical proximity. Moreover, we show the presence of historical gene-flow between the two water basins, the Atlantic Ocean and the Mediterranean Sea, and the presence of at least one extinct maternal lineage in the Mediterranean. Our work demonstrates the advantages of using full mitogenomes in phylogeographic and conservation genomic studies of threatened species.


2021 ◽  
Author(s):  
Michael Mayer ◽  
Magdalena Alonso Balmaseda

AbstractThis study investigates the influence of the anomalously warm Indian Ocean state on the unprecedentedly weak Indonesian Throughflow (ITF) and the unexpected evolution of El Niño-Southern Oscillation (ENSO) during 2014–2016. It uses 25-month-long coupled twin forecast experiments with modified Indian Ocean initial conditions sampling observed decadal variations. An unperturbed experiment initialized in Feb 2014 forecasts moderately warm ENSO conditions in year 1 and year 2 and an anomalously weak ITF throughout, which acts to keep tropical Pacific ocean heat content (OHC) anomalously high. Changing only the Indian Ocean to cooler 1997 conditions substantially alters the 2-year forecast of Tropical Pacific conditions. Differences include (i) increased probability of strong El Niño in 2014 and La Niña in 2015, (ii) significantly increased ITF transports and (iii), as a consequence, stronger Pacific ocean heat divergence and thus a reduction of Pacific OHC over the two years. The Indian Ocean’s impact in year 1 is via the atmospheric bridge arising from altered Indian Ocean Dipole conditions. Effects of altered ITF and associated ocean heat divergence (oceanic tunnel) become apparent by year 2, including modified ENSO probabilities and Tropical Pacific OHC. A mirrored twin experiment starting from unperturbed 1997 conditions and several sensitivity experiments corroborate these findings. This work demonstrates the importance of the Indian Ocean’s decadal variations on ENSO and highlights the previously underappreciated role of the oceanic tunnel. Results also indicate that, given the physical links between year-to-year ENSO variations, 2-year-long forecasts can provide additional guidance for interpretation of forecasted year-1 ENSO probabilities.


2012 ◽  
Vol 12 (3) ◽  
pp. 843-857 ◽  
Author(s):  
S. Tinti ◽  
L. Graziani ◽  
B. Brizuela ◽  
A. Maramai ◽  
S. Gallazzi

Abstract. After the 2004 Indian Ocean tsunami catastrophe, UNESCO through the IOC (Intergovernmental Oceanographic Commission) sponsored the establishment of Intergovernmental Coordination Groups (ICG) with the aim to devise and implement Tsunami Warning Systems (TWSs) in all the oceans exposed to tsunamis, in addition to the one already in operation in the Pacific (PTWS). In this context, since 2005, efforts have begun for the establishment of TWSs in the Indian Ocean (IOTWS), in the Caribbean area (CARIBE EWS) and in the North Eastern Atlantic, the Mediterranean and Connected Seas (NEAMTWS). In this paper, we focus on a specific tool that was first introduced in the PTWS routine operations, i.e., the Decision Matrix (DM). This is an easy-to-use table establishing a link between the main parameters of an earthquake and the possible ensuing tsunami in order to make quick decision on the type of alert bulletins that a Tsunami Warning Center launches to its recipients. In the process of implementation of a regional TWS for the NEAM area, two distinct DMs were recently proposed by the ICG/NEAMTWS, one for the Atlantic and the other for the entire Mediterranean area. This work applies the Mediterranean NEAMTWS DM to the earthquakes recorded in Italy and compares the action predicted by the DM vs. the action that should be appropriate in view of the observed tsunami characteristics with the aim to establish how good the performance of the Italian TWS will be when it uses the DM for future events. To this purpose, we make use of the parametric catalogue of the Italian earthquakes (CPTI04) compiled in 2004 and the most recent compilation of the Italian tsunami, based on the Italian Tsunami Catalogue of 2004 and the subsequent revisions. In order to better compare the TWS actions, we have identified four different kinds of action coding them from 0 to 3 according to the tsunami severity and have further considered three different distance ranges where these actions apply, that is local, regional and basin-wide, that refer to the distance of the message recipients from the tsunami source. The result of our analysis is that the actions prescribed by the DM are adequate only in 45%–55% of the cases, overestimations are about 37% and underestimations are the rest. As a whole, the predictive ability of the DM is not satisfactory, which implies that recipients have the difficult task in managing bulletins carrying a great deal of uncertainty and on the other hand also suggests that strategies to improve the DM or to go beyond the DM need to be found.


Sign in / Sign up

Export Citation Format

Share Document