scholarly journals Surface Immunoglobulin Light Chain–Positive Acute Lymphoblastic Leukemia of FAB LI or L2 Type: A Report of 6 Cases in Adults

1998 ◽  
Vol 110 (2) ◽  
pp. 143-149 ◽  
Author(s):  
Mohammad A. Vasef ◽  
Russell K. Brynes ◽  
Joyce L. Murata-Collins ◽  
Daniel A. Arber ◽  
L. Jeffrey Medeiros
2013 ◽  
Vol 130 (3) ◽  
pp. 188-191 ◽  
Author(s):  
Yanhui Liu ◽  
Yaping Zhai ◽  
Yin Zhang ◽  
Wei Cheng ◽  
Yulong Li

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4259-4259
Author(s):  
Hanna Makuch-Lasica ◽  
Miroslaw Majewski ◽  
Grazyna Nowak ◽  
Iwona Kania ◽  
Monika Lewandowska ◽  
...  

Abstract B-cell acute lymphoblastic leukemia (B-ALL) results from clonal expansion of B-lymphocytes derived at different stage of differentiation. Immunoglobulin (Ig) heavy chain genes (IGH), light chain kappa (IGK) and lambda (IGL) genes rearrange during early B-lymphocyte differentiation. T-cell receptor (TCR) genes are considered to rearrange exclusively in normal T lymphocytes, but malignant B lymphoblasts often contain crosslineage rearranged TCR genes. The clonal leukemic cell population, carrying identical copies of rearranged Ig and/or TCR genes, can be identified above 95% of B-ALL patients. In our study Ig/TCR genes rearrangements were detected by multiplex PCR with heteroduplex analysis according to BIOMED-2 protocol. DNA was isolated by column method from mononuclear cells isolated from the peripheral blood/bone marrow samples obtained at initial diagnosis from 36 B-ALL patients. Monoclonal rearrangements of Ig genes were detected in 100% (36/36) of patients. The most frequent rearrangements were observed in IGH genes (94%), including complete IGHV-IGHJ in 83% (30/36) and incomplete IGHD-IGHJ in 22% (8/36) of patients. Among complete IGH rearrangements 2 biallelic rearrangements in IGHV1-7 and IGHJ genes (FR3) were found. Ig light chain genes rearrangements were identified in 26 patients (72%) (including 64% of IGKV-IGKJ, 47% IGKV/intron-Kde, and 22% IGLV-IGLJ) what indicates active receptor editing occurring during B lymphoblasts leukemogenesis. Crosslineage TCR genes rearrangements were found in 97% (35/36) of patients. TCR beta genes rearrangements were detected in 47% (17/36) of patients (complete TRBV-TRBJ in 25% (9/36), TRBD-TRBJ in 6/36 patients - 17%). TRGV-TRGV in 58% (21/36), TRDV-TRDJ in 58% (21/36); 17 monoallelic and 4 biallelic were found. The inactivation of potentially functional IGKV-IGKJ by secondary rearrangements indicates active receptor editing. Our data describe IGK and IGL genes rearrangements incidence, present allelic exclusion and active receptor editing in B-ALL patients. B-ALL lymphoblast undergoes rearrangement on the same IGK allele before IGL genes rearrangement occur. The data may suggest the possible of antigens in B-ALL immunopathogenesis. The results indicate also rearranged IGK, IGL and TCR genes as stable molecular marker for monitoring MRD in B-ALL.


1986 ◽  
Vol 468 (1 Clinical Cyto) ◽  
pp. 211-226 ◽  
Author(s):  
BENJAMIN KOZINER ◽  
JANET STAVNEZER ◽  
AYAD AL-KATIB ◽  
DAVID GEBHARD ◽  
ABRAHAM MITTELMAN ◽  
...  

Blood ◽  
1980 ◽  
Vol 56 (2) ◽  
pp. 311-314
Author(s):  
DJ Ganick ◽  
JL Finlay

A case of acute lymphoblastic leukemia with morphological characteristics of Burkitt's leukemia (L3 morphology) is presented. This patient's lymphoblasts were lacking in surface immunoglobulin, but were found to contain cytoplasmic IgM. This is the first report of a morphologically B-cell leukemia showing pre-B-cell characteristics immunologically.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4480-4480
Author(s):  
Hanna Makuch-Lasica ◽  
Miroslaw Majewski ◽  
Grazyna Nowak ◽  
Monika Lewandowska ◽  
Iwona Solarska ◽  
...  

Abstract B-cell acute lymphoblastic leukemia (B-ALL) results from clonal expansion of B-lymphocytes derived at different stage of differentiation. Immunoglobulin (Ig) heavy chain genes (IGH), light chain kappa (IGK) and lambda (IGL) genes rearrange during early B-lymphocyte differentiation. T-cell receptor (TCR) genes are postulated to rearrange exclusively in normal T lymphocytes, but malignant B lymphoblasts often contain crosslineage rearranged TCR genes. The clonal leukemic cell population, carrying identical copies of rearranged Ig and/or TCR genes, can be identified above 95% of B-ALL patients. In our study Ig/TCR genes rearrangements were detected by multiplex PCR with heteroduplex analysis according to BIOMED-2 protocol. DNA was isolated by column method from mononuclear cells isolated from the peripheral blood/bone marrow samples obtained at initial diagnosis from 28 B-ALL patients. Monoclonal rearrangements of Ig genes were detected in 96% (27/28) of patients. The most frequent rearrangements were observed in IGH genes (96%), including complete IGHV-IGHJ in 75% (21/28) and incomplete IGHD-IGHJ in 31% (8/28) of patients. Among complete IGH rearrangements 4 biallelic rearrangements in IGHV1-7 and IGHJ genes (FR3) were found. Ig light chain genes rearrangements were identified in 20 patients (71%) (including 25% of IGKV-IGKJ, 50% of IGKV/intron-Kde, and 25% of IGLV-IGLJ) indicating active receptor editing occurring during B lymphoblasts leukemogenesis. Cross-lineage TCR genes rearrangements were found in 77% (23/28) of patients. TCR beta genes rearrangements were detected in 46% (13/28) of patients (complete TRBV-TRBJ in 32% (9/28), TRBD-TRBJ in 5/28 patients - 18%). TRGV-TRGV were found in 46% (13/28), TRDV-TRDJ in 50% (14/28; 10 monoallelic and 4 biallelic). TCR beta genes rearrangements with presence of TCR gamma genes rearrangements were identified in 25% (7/28) of patients. The identified Ig and TCR rearrangements were stable in patients monitored for minimal residual disease (MRD) and patients with leukemia relapse. The inactivation of potentially functional IGKV-IGKJ by secondary rearrangements indicates active receptor editing. Our data describe IGK and IGL genes rearrangements incidence, present allelic exclusion and active receptor editing in B-ALL patients. B-ALL lymphoblasts undergo many rearrangements on the same IGK allele before they rearrange IGL genes. The data suggest the role of antigen in B-ALL immunopathogenesis. The results indicate also rearranged IGK, IGL and TCR genes as a possible molecular marker for monitoring MRD in B-ALL.


1990 ◽  
Vol 93 (4) ◽  
pp. 563-568 ◽  
Author(s):  
Curtis A. Hanson ◽  
Maran Thamilarasan ◽  
Charles W. Ross ◽  
Lloyd M. Stoolman ◽  
Bertram Schnitzer

Sign in / Sign up

Export Citation Format

Share Document