scholarly journals Modeled and Perceived Exposure to Radiofrequency Electromagnetic Fields From Mobile-Phone Base Stations and the Development of Symptoms Over Time in a General Population Cohort

2017 ◽  
Vol 186 (2) ◽  
pp. 210-219 ◽  
Author(s):  
Astrid L. Martens ◽  
Pauline Slottje ◽  
Danielle R. M. Timmermans ◽  
Hans Kromhout ◽  
Marije Reedijk ◽  
...  
2021 ◽  
Vol 193 ◽  
pp. 110583
Author(s):  
Sylvie Martin ◽  
Pascal De Giudici ◽  
Jean-Christian Genier ◽  
Etienne Cassagne ◽  
Jean-François Doré ◽  
...  

2020 ◽  
Vol 99 (4) ◽  
pp. 344-350
Author(s):  
Evgeny V. Zibarev ◽  
A. S. Afanasev ◽  
O. V. Slusareva ◽  
T. I. Muragimov ◽  
V. A. Stepanets ◽  
...  

In recent years, in the Russian Federation there has been an increase in the levels of radiofrequency electromagnetic fields in residential areas, including due to an increase in the number of base stations (BS). The purpose of sanitary and epidemiological surveillance at the stages of placement and commissioning of base stations (BS) is to prevent their adverse effects on public health. The increase in the number of base stations, together with the advent of new electronic equipment and antennas, provide opportunities for improving the processes of their accounting at the stage of placement and monitoring of the levels of radiofrequency electromagnetic fields at the operation stage. This automation tool can be a geo-information portal for providing sanitary and epidemiological surveillance of cellular base stations. The prototype of the geo-information portal allows both calculating the size of sanitary protection zones (SPZ) and building restriction zones (RZ) from the BS in online mode, displaying the results of calculations in graphical form and issuing sanitary and epidemiological conclusions for the placement and operation of base stations. The geo-information portal has the ability to synchronize with the data of the radio frequency center. Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing will be able to receive up-to-date analytical data. There will be completely automated processes of collecting, processing and storing information on BS.


Author(s):  
Amedeo Minichino ◽  
Matthew A. Jackson ◽  
Marta Francesconi ◽  
Claire J. Steves ◽  
Cristina Menni ◽  
...  

AbstractAnhedonia and amotivation are debilitating symptoms and represent unmet therapeutic needs in a range of clinical conditions. The gut-microbiome-endocannabinoid axis might represent a potential modifiable target for interventions. Based on results obtained from animal models, we tested the hypothesis that the endocannabinoid system mediates the association between gut-microbiome diversity and anhedonia/amotivation in a general population cohort. We used longitudinal data collected from 786 volunteer twins recruited as part the TwinsUK register. Our hypothesis was tested with a multilevel mediation model using family structure as random intercept. The model was set using alpha diversity (within-individual gut-microbial diversity) as predictor, serum and faecal levels of the endocannabinoid palmitoylethanolamide (PEA) as mediator, and anhedonia/amotivation as outcome. PEA is considered the endogenous equivalent of cannabidiol, with increased serum levels believed to have anti-depressive effects, while increased stool PEA levels, reflecting increased excretion, are believed to have opposite, detrimental, effects on mental health. We therefore expected that either reduced serum PEA or increased stool PEA would mediate the association between microbial diversity and anhedonia amotivation. Analyses were adjusted for obesity, diet, antidepressant use, sociodemographic and technical covariates. Data were imputed using multiple imputation by chained equations. Mean age was 65.2 ± 7.6; 93% of the sample were females. We found a direct, significant, association between alpha diversity and anhedonia/amotivation (β = −0.37; 95%CI: −0.71 to −0.03; P = 0.03). Faecal, but not serum, levels of the endocannabinoid palmitoylethanolamide (PEA) mediated this association: the indirect effect was significant (β = −0.13; 95%CI: −0.24 to −0.01; P = 0.03), as was the total effect (β = −0.38; 95%CI: −0.72 to −0.04; P = 0.03), whereas the direct effect of alpha diversity on anhedonia/amotivation was attenuated fully (β = −0.25; 95%CI: −0.60 to 0.09; P = 0.16). Our results suggest that gut-microbial diversity might contribute to anhedonia/amotivation via the endocannabinoid system. These findings shed light on the biological underpinnings of anhedonia/amotivation and suggest the gut microbiota-endocannabinoid axis as a promising therapeutic target in an area of unmet clinical need.


2021 ◽  
Vol 331 ◽  
pp. e53-e54
Author(s):  
K.L. Rasmussen ◽  
A. Tybjærg-Hansen ◽  
B.G. Nordestgaard ◽  
R. Frikke-Schmidt

Sign in / Sign up

Export Citation Format

Share Document