scholarly journals Developmental and molecular characterization of novel staminodes in Aquilegia

2020 ◽  
Vol 126 (2) ◽  
pp. 231-243 ◽  
Author(s):  
Clara Meaders ◽  
Ya Min ◽  
Katherine J Freedberg ◽  
Elena Kramer

Abstract Background and Aims The ranunculid model system Aquilegia is notable for the presence of a fifth type of floral organ, the staminode, which appears to be the result of sterilization and modification of the two innermost whorls of stamens. Previous studies have found that the genetic basis for the identity of this new organ is the result of sub- and neofunctionalization of floral organ identity gene paralogues; however, we do not know the extent of developmental and molecular divergence between stamens and staminodes. Methods We used histological techniques to describe the development of the Aquilegia coerulea ‘Origami’ staminode relative to the stamen filament. These results have been compared with four other Aquilegia species and the closely related genera Urophysa and Semiaquilegia. As a complement, RNA sequencing has been conducted at two developmental stages to investigate the molecular divergence of the stamen filaments and staminodes in A. coerulea ‘Origami’. Key Results Our developmental study has revealed novel features of staminode development, most notably a physical interaction along the lateral margin of adjacent organs that appears to mediate their adhesion. In addition, patterns of abaxial/adaxial differentiation are observed in staminodes but not stamen filaments, including asymmetric lignification of the adaxial epidermis in the staminodes. The comparative transcriptomics are consistent with the observed lignification of staminodes and indicate that stamen filaments are radialized due to overexpression of adaxial identity, while the staminodes are expanded due to the balanced presence of abaxial identity. Conclusions These findings suggest a model in which the novel staminode identity programme interacts with the abaxial/adaxial identity pathways to produce two whorls of laterally expanded organs that are highly differentiated along their abaxial/adaxial axis. While the ecological function of Aquilegia staminodes remains to be determined, these data are consistent with a role in protecting the early carpels from herbivory and/or pathogens.

2016 ◽  
Vol 7 ◽  
Author(s):  
Sandra Poyatos-Pertíñez ◽  
Muriel Quinet ◽  
Ana Ortíz-Atienza ◽  
Fernando J. Yuste-Lisbona ◽  
Clara Pons ◽  
...  

HLA ◽  
2021 ◽  
Author(s):  
Maria Loginova ◽  
Olga Makhova ◽  
Daria Smirnova ◽  
Igor Paramonov ◽  
Maksim Zarubin

HLA ◽  
2020 ◽  
Author(s):  
Steve Genebrier ◽  
Vincent Elsermans ◽  
Emeric Texeraud ◽  
Gerald Bertrand ◽  
Virginie Renac

HLA ◽  
2021 ◽  
Author(s):  
Marine Cargou ◽  
Vincent Elsermans ◽  
Isabelle Top ◽  
Laura Blouin ◽  
Jonathan Visentin
Keyword(s):  

Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 439
Author(s):  
Avinash Chandra Rai ◽  
Eyal Halon ◽  
Hanita Zemach ◽  
Tali Zviran ◽  
Isaac Sisai ◽  
...  

In mango (Mangifera indica L.), fruitlet abscission limits productivity. The INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) peptide acts as a key component controlling abscission events in Arabidopsis. IDA-like peptides may assume similar roles in fruit trees. In this study, we isolated two mango IDA-like encoding-genes, MiIDA1 and MiIDA2. We used mango fruitlet-bearing explants and fruitlet-bearing trees, in which fruitlets abscission was induced using ethephon. We monitored the expression profiles of the two MiIDA-like genes in control and treated fruitlet abscission zones (AZs). In both systems, qRT-PCR showed that, within 24 h, both MiIDA-like genes were induced by ethephon, and that changes in their expression profiles were associated with upregulation of different ethylene signaling-related and cell-wall modifying genes. Furthermore, ectopic expression of both genes in Arabidopsis promoted floral-organ abscission, and was accompanied by an early increase in the cytosolic pH of floral AZ cells—a phenomenon known to be linked with abscission, and by activation of cell separation in vestigial AZs. Finally, overexpression of both genes in an Atida mutant restored its abscission ability. Our results suggest roles for MiIDA1 and MiIDA2 in affecting mango fruitlet abscission. Based on our results, we propose new possible modes of action for IDA-like proteins in regulating organ abscission.


Viruses ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 27
Author(s):  
Jun Kwon ◽  
Sang Guen Kim ◽  
Hyoun Joong Kim ◽  
Sib Sankar Giri ◽  
Sang Wha Kim ◽  
...  

The increasing emergence of antimicrobial resistance has become a global issue. Therefore, many researchers have attempted to develop alternative antibiotics. One promising alternative is bacteriophage. In this study, we focused on a jumbo-phage infecting Salmonella isolated from exotic pet markets. Using a Salmonella strain isolated from reptiles as a host, we isolated and characterized the novel jumbo-bacteriophage pSal-SNUABM-04. This phage was investigated in terms of its morphology, host infectivity, growth and lysis kinetics, and genome. The phage was classified as Myoviridae based on its morphological traits and showed a comparatively wide host range. The lysis efficacy test showed that the phage can inhibit bacterial growth in the planktonic state. Genetic analysis revealed that the phage possesses a 239,626-base pair genome with 280 putative open reading frames, 76 of which have a predicted function and 195 of which have none. By genome comparison with other jumbo phages, the phage was designated as a novel member of Machinavirus composed of Erwnina phages.


Sign in / Sign up

Export Citation Format

Share Document