fruitlet abscission
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 23)

H-INDEX

17
(FIVE YEARS 3)

Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 123
Author(s):  
Sara Serra ◽  
Stefan Roeder ◽  
Ryan Sheick ◽  
Stefano Musacchi

‘WA 38’ (‘Enterprise’ × ‘Honeycrisp’) is an apple variety that is characterized by a peculiar self-thinning trait in which most of the fruitlets naturally shed within the first 8 weeks after bloom, leaving some clusters empty, but most with 1–2 apples. This study aimed to investigate potential causes for the relatively low fruit set observed in ‘WA 38’ by investigating its flower biology. This study comprised three objectives: (1) To characterize the effective pollination period (EPP) of ‘WA 38’ by studying stigmatic receptivity, pollen tube growth, and ovule longevity in ‘WA 38’ flowers, (2) to compare the pollen tube growth of 5 fully compatible pollinizer varieties in ‘WA 38’ pistils, and (3) to evaluate fruit and seed set resulting from controlled pollinations with 5 fully compatible pollinizer varieties. The results showed ‘WA 38’ EPP was approximately 3.2 days in 2019 and 1.4 days in 2020, and that differences in pollen sources did not attribute significant differences in fertility in ‘WA 38’ flowers. The results of this study suggest mechanisms other than pollination and fertilization, such as competition among fruitlets within a cluster or hormone signaling, may have a stronger impact on ‘WA 38’ fruitlet abscission.


Horticulturae ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 576
Author(s):  
Qian Wu ◽  
Xingshuai Ma ◽  
Qingxin Chen ◽  
Ye Yuan ◽  
Huicong Wang ◽  
...  

Fruit abscission is triggered by multiple changes in endogenous components of the fruit, including energy metabolism. However, it is still unknown how the core energy metabolism pathways are modified during fruit abscission. Here, we investigated the relationship between carbon starvation-induced fruitlet abscission and energy metabolism changes in litchi. The fruitlet abscission of litchi ‘Feizixiao’ was induced sharply by girdling plus defoliation (GPD), a carbon stress treatment. Using liquid chromatography tandem mass spectrometry (LC-MS/MS) targeted metabolomics analysis, we identified a total of 21 metabolites involved in glycolysis, TCA cycle and oxidative phosphorylation pathways. Among them, the content of most metabolites in glycolysis pathways and TCA cycles was reduced, and the activity of corresponding metabolic enzymes such as ATP-dependent phosphofructokinase (ATP-PFK), pyruvate kinase (PK), citrate synthase (CS), succinate thiokinase (SAT), and NAD-dependent malate dehydrogenase (NAD-MDH) was decreased. Consistently, we further showed that the expression of the relative genes (LcPFK2, LcPK2, LcPK4, LcCS1, LcCS2, LcSAT, LcMDH1 and LcMDH2) was also significantly down-regulated. In contrast, the level of ATP, an important metabolite in the oxidative phosphorylation pathway, was elevated in parallel with both higher activity of H+-ATPase and the increased expression level of LcH+-ATPase1. In conclusion, our findings suggest that carbon starvation can induce fruitlet abscission in litchi probably by energy depletion that mediated through both the suppression of the glycolysis pathway and TCA cycle and the enhancement of the oxidative phosphorylation pathway.


2021 ◽  
Vol 22 (21) ◽  
pp. 11968
Author(s):  
Qiandong Hou ◽  
Zhilang Qiu ◽  
Zhuang Wen ◽  
Huimin Zhang ◽  
Zhengchun Li ◽  
...  

Auxin response factors (ARFs) play a vital role in plant growth and development. In the current study, 16 ARF members have been identified in the sweet cherry (Prunus avium L.) genome. These genes are all located in the nucleus. Sequence analysis showed that genes in the same subgroup have similar exon-intron structures. A phylogenetic tree has been divided into five groups. The promoter sequence includes six kinds of plant hormone-related elements, as well as abiotic stress response elements such as low temperature or drought. The expression patterns of PavARF in different tissues, fruitlet abscission, cold and drought treatment were comprehensively analyzed. PavARF10/13 was up-regulated and PavARF4/7/11/12/15 was down-regulated in fruitlet abscising. These genes may be involved in the regulation of fruit drop in sweet cherry fruits. This study comprehensively analyzed the bioinformatics and expression pattern of PavARF, which can lay the foundation for further understanding the PavARF family in plant growth development and fruit abscission.


2021 ◽  
pp. 243-274
Author(s):  
James E. Larson ◽  
Thomas M. Kon ◽  
Anish Malladi
Keyword(s):  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xingshuai Ma ◽  
Ye Yuan ◽  
Caiqin Li ◽  
Qian Wu ◽  
Zidi He ◽  
...  

AbstractAbscission in plants is tightly controlled by multiple phytohormones and the expression of various genes. However, whether the plant hormone brassinosteroids (BRs) are involved in this process is largely unknown. Here, we found that exogenous application of BRs reduced the ethylene-induced fruitlet abscission of litchi due to lower ethylene (ET) production and suppressed the expression of the ethylene biosynthetic genes LcACS1/4 and LcACO2/3 in the fruitlet abscission zone (FAZ). Two genes that encode the BR core signaling components brassinazole resistant (BZR) proteins, namely, LcBZR1 and LcBZR2, were characterized. LcBZR1/2 were localized to the nucleus and acted as transcription repressors. Interestingly, the LcBZR1/2 transcript levels were not changed during ET-induced fruitlet abscission, while their expression levels were significantly increased after BR application. Moreover, gel shift and transient expression assays indicated that LcBZR1/2 could suppress the transcription of LcACS1/4 and LcACO2/3 by specifically binding to their promoters. Importantly, ectopic expression of LcBZR1/2 in Arabidopsis significantly delayed floral organ abscission and suppressed ethylene biosynthesis. Collectively, our results suggest that BRs suppress ET-induced fruitlet abscission through LcBZR1/2-controlled expression of genes related to ethylene biosynthesis in litchi. In addition, similar results were observed in the Arabidopsis gain-of-function mutant bzr1-1D, which showed delayed floral organ abscission in parallel with lower expression of ACS/ACO genes and reduced ethylene production, suggesting that the mechanism of BZR-controlled organ abscission via regulation of ethylene biosynthesis might be conserved in Arabidopsis.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhilang Qiu ◽  
Zhuang Wen ◽  
Qiandong Hou ◽  
Guang Qiao ◽  
Kun Yang ◽  
...  

Abstract Background The shedding of premature sweet cherry (Prunus avium L) fruitlet has significantly impacted production, which in turn has a consequential effect on economic benefits. Result To better understand the molecular mechanism of sweet cherry fruitlet abscission, pollen viability and structure had been observed from the pollination trees. Subsequently, the morphological characters of the shedding fruitlet, the plant hormone titers of dropping carpopodium, the transcriptome of the abscising carpopodium, as well as the HD-ZIP gene family were investigated. These findings showed that the pollens giving rise to heavy fruitlet abscission were malformed in structure, and their viability was lower than the average level. The abscising fruitlet and carpopodium were characterized in red color, and embryos of abscising fruitlet were aborted, which was highly ascribed to the low pollen viability and malformation. Transcriptome analysis showed 6462 were significantly differentially expressed, of which 2456 genes were up-regulated and 4006 down-regulated in the abscising carpopodium. Among these genes, the auxin biosynthesis and signal transduction genes (α-Trp, AUX1), were down-regulated, while the 1-aminocyclopropane-1-carboxylate oxidase gene (ACO) affected in ethylene biosynthesis, was up-regulated in abscising carpopodium. About genes related to cell wall remodeling (CEL, PAL, PG EXP, XTH), were up-regulated in carpopodium abscission, which reflecting the key roles in regulating the abscission process. The results of transcriptome analysis considerably conformed with those of proteome analysis as documented previously. In comparison with those of the retention fruitlet, the auxin contents in abscising carpopodium were significantly low, which presumably increased the ethylene sensitivity of the abscission zone, conversely, the abscisic acid (ABA) accumulation was considerably higher in abscising carpopodium. Furthermore, the ratio of (TZ + IAA + GA3) / ABA also obviously lower in abscising carpopodium. Besides, the HD-ZIP gene family analysis showed that PavHB16 and PavHB18 were up-regulated in abscising organs. Conclusion Our findings combine morphology, cytology and transcriptional regulation to reveal the molecular mechanism of sweet cherry fruitlet abscission. It provides a new perspective for further study of plant organ shedding.


Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 439
Author(s):  
Avinash Chandra Rai ◽  
Eyal Halon ◽  
Hanita Zemach ◽  
Tali Zviran ◽  
Isaac Sisai ◽  
...  

In mango (Mangifera indica L.), fruitlet abscission limits productivity. The INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) peptide acts as a key component controlling abscission events in Arabidopsis. IDA-like peptides may assume similar roles in fruit trees. In this study, we isolated two mango IDA-like encoding-genes, MiIDA1 and MiIDA2. We used mango fruitlet-bearing explants and fruitlet-bearing trees, in which fruitlets abscission was induced using ethephon. We monitored the expression profiles of the two MiIDA-like genes in control and treated fruitlet abscission zones (AZs). In both systems, qRT-PCR showed that, within 24 h, both MiIDA-like genes were induced by ethephon, and that changes in their expression profiles were associated with upregulation of different ethylene signaling-related and cell-wall modifying genes. Furthermore, ectopic expression of both genes in Arabidopsis promoted floral-organ abscission, and was accompanied by an early increase in the cytosolic pH of floral AZ cells—a phenomenon known to be linked with abscission, and by activation of cell separation in vestigial AZs. Finally, overexpression of both genes in an Atida mutant restored its abscission ability. Our results suggest roles for MiIDA1 and MiIDA2 in affecting mango fruitlet abscission. Based on our results, we propose new possible modes of action for IDA-like proteins in regulating organ abscission.


2020 ◽  
Author(s):  
Zhilang Qiu ◽  
Zhuang Wen ◽  
Qiandong Hou ◽  
Guang Qiao ◽  
Kun Yang ◽  
...  

Abstract Background The shedding of premature sweet cherry (Prunus avium L) fruit has significantly impacted production, which in turn has a consequential effect on economic benefits. Result To better understand the molecular mechanism of sweet cherry fruitlet abscission, pollens viability and structure had observed from the pollination trees. Subsequently, the morphological characters of shedding fruitlet, the plant hormone titers of dropping carpopodium, transcriptome of the abscising carpopodium, as well as the HD-ZIP gene family were investigated. These findings showed that the pollens giving rise to heavy fruitlet abscission were malformed in structure, and their viability was lower than the average level. The abscising fruitlet and carpopodium characterized in red color, and embryos of abscising fruitlets were aborted, which was highly ascribed to the low pollen viability and malformation. Transcriptome analysis showed 6,462 were significantly differentially expressed, of which 2,456 genes were up-regulated and 4,006 down-regulated. Among these genes, the auxin biosynthesis and signal transduction genes (α-Trp, AUX1), was down-regulated, while 1-aminocyclopropane-1-carboxylate oxidase gene (ACO) affected in ethylene biosynthesis, was up-regulated in abscising carpopodium. About genes related to cell wall remodeling (CEL, PAL, PG EXP, XTH), were up-regulated in carpopodium abscission, which reflecting the key roles in regulating the abscission process. The results of transcriptome analysis considerably conformed with those of proteome analysis as documented previously. In comparison with those of the retention fruitlet, the auxin contents in abscising carpopodium were significantly low, which presumably increased the ethylene sensitivity of the abscission zone, conversely, the abscisic acid (ABA) accumulation was considerably higher in abscising carpopodium. Furthermore, the ratio of (TZ + IAA + GA3) / ABA also obviously lower in abscising carpopodium. Besides, the HD-ZIP gene family analysis showed that PavHB16 and PavHB18 were up-regulated in abscising organs. Conclusion Our findings combine morphology, cytology and transcriptional regulation to reveal the molecular mechanism of sweet cherry fruitlet abscission. It provides a new perspective for further study of plant organ shedding.


2020 ◽  
Vol 103 (4) ◽  
pp. 1338-1350
Author(s):  
Xingshuai Ma ◽  
Ye Yuan ◽  
Qian Wu ◽  
Jun Wang ◽  
Jianguo Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document