scholarly journals Long-distance dispersal of the beach strawberry, Fragaria chiloensis, from North America to Chile and Hawaii

2020 ◽  
Author(s):  
James F Hancock ◽  
Harold H Prince

Abstract Background and Aims The beach strawberry, Fragaria chiloensis, is found in a narrow coastal band from the Aleutian Islands to central California and then jumps thousands of kilometres all the way to Hawaii and Chile. As it probably had a North American origin, it must have been introduced to the other locations by long-distance dispersal. The aim of this study was to determine which agent carried the beach strawberry to its Pacific and South American locations. Methods A deductive framework was constructed to separate between the possible modes of long-distance dispersal involving animals, wind and ocean currents. Bird migration was subsequently identified as the most likely scenario, and then the routes, habitats, feeding preferences and flight distances of all the shorebird species were evaluated to determine the most likely carrier. Key Results Six species migrate between North America and Chile and feed on the beaches and rocky shores where F. chiloensis grows naturally: Black-bellied Plovers, Greater Yellowlegs, Ruddy Turnstones, Sanderlings, Whimbrels and Willets. Of these, only two eat fruit and migrate in long continuous flight: Ruddy Turnstones and Whimbrels. Two species travel between North America and Hawaii, eat fruit and forage on the beaches and rocky shores where F. chiloensis grows naturally: Pacific Golden-plovers and Ruddy Turnstones. Ruddy Turnstones eat far less fruit than Pacific Golden-plovers and Whimbrels, making them less likely to have introduced the beach strawberry to either location. Conclusions We provide evidence that F. chiloesis seeds were probably dispersed to Hawaii by Pacific Golden-plovers and to Chile by Whimbrels.

Polar Record ◽  
1989 ◽  
Vol 25 (154) ◽  
pp. 223-228 ◽  
Author(s):  
J. M. B. Smith ◽  
P. Rudall ◽  
P. L. Keage

AbstractSamples from 73 pieces of non-structural driftwood on Heard Island (53°06′S, 73°30′E) were identified to genus or species. Thirty-one belonged to South American species of Nothofagus. The remainder, consisting mostly of conifers especially Picea and Larix, probably came from ships' cargoes. The assemblage is similar to those reported, from smaller samples, on other southern islands. Other items of flotsam, including fishing buoys and drift-cards, are also reported from Heard Island. The significance of driftwood transport from South America to the island in accounting for long-distance dispersal of terrestrial and intertidal organisms is discussed.


2012 ◽  
Vol 44 (2) ◽  
pp. 189-246 ◽  
Author(s):  
Gintaras KANTVILAS

AbstractWith 30 species, Tasmania is a major area of species diversity in the genus Menegazzia. Seven of these are new to science: M. abscondita Kantvilas, known from Tasmania and New Zealand, and M. athrotaxidis Kantvilas, M. hypogymnioides Kantvilas, M. petraea Kantvilas, M. ramulicola Kantvilas, M. subtestacea Kantvilas and M. tarkinea Kantvilas, all endemic to Tasmania. An identification key, descriptions based exclusively on Tasmanian collections, and detailed discussion of distribution, ecology, chemical composition and inter-species relationships are provided. All literature records of Menegazzia species pertaining to Tasmania are accounted for. New synonyms include: Menegazzia prototypica P. James and Parmelia pertusa var. coskinodes F. Wilson [synonyms of M. myriotrema (Müll. Arg.) R. Sant.], M. fertilis P. James [a synonym of M. platytrema (Müll. Arg.) R. Sant.] and Parmelia pertusa var. montana F. Wilson (a synonym of M. subtestacea). Incorrectly recorded species that should be deleted from the Tasmanian census include M. castanea P. James & D. J. Galloway (present on Macquarie Island) and M. testacea P. James & D. J. Galloway (endemic to New Zealand). The South American species, M. sanguinascens (Räs.) R. Sant., is recorded in Australasia (Tasmania) for the first time, whereas the widespread south-eastern Australian M. norstictica P. James is recorded for Western Australia. Salient features of the genus are discussed, including morphology, anatomy and chemistry. The biogeography of the genus is explored briefly. Twelve species (40%) are endemic to Tasmania, a level of endemism unmatched by any other species-rich genus on the island. Twelve species are shared with mainland Australia, eleven are shared with New Zealand, and only four species are shared with southern South America, all of which are sorediate, suggesting they are products of long-distance dispersal.


2006 ◽  
Vol 12 (1) ◽  
pp. 71-79 ◽  
Author(s):  
Jim R. Muirhead ◽  
Brian Leung ◽  
Colin Overdijk ◽  
David W. Kelly ◽  
Kanavillil Nandakumar ◽  
...  

2017 ◽  
Vol 104 (11) ◽  
pp. 1651-1659 ◽  
Author(s):  
Lily R. Lewis ◽  
Elisabeth M. Biersma ◽  
Sarah B. Carey ◽  
Kent Holsinger ◽  
Stuart F. McDaniel ◽  
...  

1990 ◽  
Vol 2 (1) ◽  
pp. 127-132
Author(s):  
Dana Griffin III

The South American paramos appeared in Pliocene times and persist to the present day. The moss flora of this habitat consists of an estimated 400 species that comprise 8 floristic groups. In Venezuela these groups and their percent representation are as follows: neotropical 37%, Andean 26%, cosmopolitan 18%, Andean-African 8%, neotropical-Asiatic 3%, neotropical-Australasian 2%, temperate Southern Hemisphere 2% and northern boreal-temperate 2%. Acrocarpous taxa outnumber pleurocarps by nearly 3:1. The neotropical and Andean floristic stocks likely were present prior to late Pliocene orogenies that elevated the cordillera above climatic timberlines. These species may have existed in open, marshy areas (paramillos) or may have evolved from cloud forest ancestors. Taxa of northern boreal- temperate affinities, including those with Asiatic distributions, probably arrived in the paramos during the Pleistocene, a period which may also have seen the establishment in the Northern Andes of some cosmopolitan elements. Species with temperate Southern Hemisphere and Australasian affinities likely spread first to austral South America thence migrated northward during a cool, moist interval sometime over the past 2.5-3 million years or may have become established in the paramos as a result of long- distance dispersal.


1996 ◽  
Vol 174 (1) ◽  
pp. 221-224 ◽  
Author(s):  
R. P. Smith ◽  
P. W. Rand ◽  
E. H. Lacombe ◽  
S. R. Morris ◽  
D. W. Holmes ◽  
...  

2014 ◽  
Vol 2 (1) ◽  
Author(s):  
Dara A. Satterfield ◽  
Andrew K. Davis

AbstractThe migration of monarch butterflies (Danaus plexippus) in North America has a number of parallels with long-distance bird migration, including the fact that migratory populations of monarchs have larger and more elongated forewings than residents. These characteristics likely serve to optimize flight performance in monarchs, as they also do with birds. A question that has rarely been addressed thus far in birds or monarchs is if and how wing characteristics vary within a migration season. Individuals with superior flight performance should migrate quickly, and/or with minimal stopovers, and these individuals should be at the forefront of the migratory cohort. Conversely, individuals with poor flight performance and/or low endurance would be more likely to fall behind, and these would comprise the latest migrants. Here we examined how the wing morphology of migrating monarchs varies to determine if wing characteristics of early migrants differ from late migrants. We measured forewing area, elongation (length/width), and redness, which has been shown to predict flight endurance in monarchs. Based on a collection of 75 monarchs made one entire season (fall 2010), results showed that the earliest migrants (n = 20) in this cohort had significantly redder and more elongated forewings than the latest migrants (n = 17). There was also a non-significant tendency for early migrants to have larger forewing areas. These results suggest that the pace of migration in monarchs is at least partly dependent on the properties of their wings. Moreover, these data also raise a number of questions about the ultimate fate of monarchs that fall behind


1999 ◽  
Vol 79 (1) ◽  
pp. 153-163 ◽  
Author(s):  
David R. Clements ◽  
Mahesh K. Upadhyaya ◽  
Shelley J. Bos

Several types of salsify or goat's-beard, Tragopogon species (Asteraceae), are found in Canada as biennial or monocarpic perennial herbs with yellow or purple flowers. Introduced from Eurasia, T. pratensis and T. dubius have become established in all provinces in Canada except Newfoundland and the territories. Tragopogon porrifolius tends to be more local, but is also found in southern areas of most provinces. Tragopogon species hybridize readily, and the tetraploid species T. mirus and T. miscellus have resulted from crosses among the three diploid Tragopogon species in North America. Salsify species produce relatively large umbrella-like pappuses which promote long-distance dispersal. These species also invade rangeland, and are considered noxious weeds in some parts of Canada. Key words: Tragopogon dubius, Tragopogon pratensis, Tragopogon porrifolius, Tragopogon mirus, Tragopogon miscellus, salsify, goat's-beard, Asteraceae, Compositae, hybridization, weed biology


2018 ◽  
Vol 56 (5) ◽  
pp. 430-448 ◽  
Author(s):  
AJ Harris ◽  
Stefanie Ickert-Bond ◽  
Aarón Rodríguez

Sign in / Sign up

Export Citation Format

Share Document