scholarly journals Terrestrial laser scanning: a new standard of forest measuring and modelling?

2021 ◽  
Author(s):  
Markku Åkerblom ◽  
Pekka Kaitaniemi

Abstract Background Laser scanning technology has opened new horizons for the research of forest dynamics, because it provides a largely automated and non-destructive method to rapidly capture the structure of individual trees and entire forest stands at multiple spatial scales. The structural data themselves or in combination with additional remotely sensed data also provide information on the local physiological state of structures within trees. The capacity of new methods is facilitated by the ongoing development of automated processing tools that are designed to capture information from the point cloud data provided by the remote measurements. Scope Terrestrial laser scanning (TLS), performed from the ground or from unmanned aerial vehicles, in particular, has potential to become a unifying measurement standard for forest research questions, because the equipment is flexible to use in the field and has the capacity to capture branch-level structural information at the forestplot or even forest scale. This issue of Annals of Botany includes selected papers that exemplify the current and potential uses of TLS, such as for examination of crown interactions between trees, growth dynamics of mixed stands, non-destructive characterization of urban trees, and enhancement of ecological and evolutionary models. The papers also present current challenges in the applicability of TLS methods and report recent developments in methods facilitating the use of TLS data for research purposes, including automatic processing chains and quantifying branch and above-ground biomass. In this article, we provide an overview of the current and anticipated future capacity of TLS and related methods in solving questions that utilize measurements and models of forests. Conclusions Due to its measurement speed, TLS provides a method to effortlessly capture large amounts of detailed structural forest information, and consequent proxy data for tree and forest processes, at a far wider spatial scale than is feasible with manual measurements. Issues with measurement precision and occlusion of laser beams before they reach their target structures continue to reduce the accuracy of TLS data, but the limitations are counterweighted by the measurement speed that enables large sample sizes. The currently high time-cost of analysing TLS data, in turn, is likely to decrease through progress in automated processing methods. The developments point towards TLS becoming a new and widely accessible standard tool in forest measurement and modelling.

2021 ◽  
Vol 13 (3) ◽  
pp. 507
Author(s):  
Tasiyiwa Priscilla Muumbe ◽  
Jussi Baade ◽  
Jenia Singh ◽  
Christiane Schmullius ◽  
Christian Thau

Savannas are heterogeneous ecosystems, composed of varied spatial combinations and proportions of woody and herbaceous vegetation. Most field-based inventory and remote sensing methods fail to account for the lower stratum vegetation (i.e., shrubs and grasses), and are thus underrepresenting the carbon storage potential of savanna ecosystems. For detailed analyses at the local scale, Terrestrial Laser Scanning (TLS) has proven to be a promising remote sensing technology over the past decade. Accordingly, several review articles already exist on the use of TLS for characterizing 3D vegetation structure. However, a gap exists on the spatial concentrations of TLS studies according to biome for accurate vegetation structure estimation. A comprehensive review was conducted through a meta-analysis of 113 relevant research articles using 18 attributes. The review covered a range of aspects, including the global distribution of TLS studies, parameters retrieved from TLS point clouds and retrieval methods. The review also examined the relationship between the TLS retrieval method and the overall accuracy in parameter extraction. To date, TLS has mainly been used to characterize vegetation in temperate, boreal/taiga and tropical forests, with only little emphasis on savannas. TLS studies in the savanna focused on the extraction of very few vegetation parameters (e.g., DBH and height) and did not consider the shrub contribution to the overall Above Ground Biomass (AGB). Future work should therefore focus on developing new and adjusting existing algorithms for vegetation parameter extraction in the savanna biome, improving predictive AGB models through 3D reconstructions of savanna trees and shrubs as well as quantifying AGB change through the application of multi-temporal TLS. The integration of data from various sources and platforms e.g., TLS with airborne LiDAR is recommended for improved vegetation parameter extraction (including AGB) at larger spatial scales. The review highlights the huge potential of TLS for accurate savanna vegetation extraction by discussing TLS opportunities, challenges and potential future research in the savanna biome.


2021 ◽  
Vol 13 (14) ◽  
pp. 2773
Author(s):  
Georgios Arseniou ◽  
David W. MacFarlane ◽  
Dominik Seidel

Trees have a fractal-like branching architecture that determines their structural complexity. We used terrestrial laser scanning technology to study the role of foliage in the structural complexity of urban trees. Forty-five trees of three deciduous species, Gleditsia triacanthos, Quercus macrocarpa, Metasequoia glyptostroboides, were sampled on the Michigan State University campus. We studied their structural complexity by calculating the box-dimension (Db) metric from point clouds generated for the trees using terrestrial laser scanning, during the leaf-on and -off conditions. Furthermore, we artificially defoliated the leaf-on point clouds by applying an algorithm that separates the foliage from the woody material of the trees, and then recalculated the Db metric. The Db of the leaf-on tree point clouds was significantly greater than the Db of the leaf-off point clouds across all species. Additionally, the leaf removal algorithm introduced bias to the estimation of the leaf-removed Db of the G. triacanthos and M. glyptostroboides trees. The index capturing the contribution of leaves to the structural complexity of the study trees (the ratio of the Db of the leaf-on point clouds divided by the Db of the leaf-off point clouds minus one), was negatively correlated with branch surface area and different metrics of the length of paths through the branch network of the trees, indicating that the contribution of leaves decreases as branch network complexity increases. Underestimation of the Db of the G. triacanthos trees, after the artificial leaf removal, was related to maximum branch order. These results enhance our understanding of tree structural complexity by disentangling the contribution of leaves from that of the woody structures. The study also highlighted important methodological considerations for studying tree structure, with and without leaves, from laser-derived point clouds.


2020 ◽  
Vol 12 (11) ◽  
pp. 1841 ◽  
Author(s):  
Zihui Zhu ◽  
Christoph Kleinn ◽  
Nils Nölke

Crown volume is a tree attribute relevant in a number of contexts, including photosynthesis and matter production, storm resistance, shadowing of lower layers, habitat for various taxa. While commonly the total crown volume is being determined, for example by wrapping a convex hull around the crown, we present here a methodological approach towards assessing the tree green crown volume (TGCVol), the crown volume with a high density of foliage, which we derive by terrestrial laser scanning in a case study of solitary urban trees. Using the RGB information, we removed the hits on stem and branches within the tree crown and used the remaining leaf hits to determine TGCVol from k-means clustering and convex hulls for the resulting green 3D clusters. We derived a tree green crown volume index (TGCVI) relating the green crown volume to the total crown volume. This TGCVI is a measure of how much a crown is “filled with green” and scale-dependent (a function of specifications of the k-means clustering). Our study is a step towards a standardized assessment of tree green crown volume. We do also address a number of remaining methodological challenges.


2020 ◽  
Vol 12 (13) ◽  
pp. 2126 ◽  
Author(s):  
Zhaoshang Xu ◽  
Guang Zheng ◽  
L. Monika Moskal

Accurately mapping forest effective leaf area index (LAIe) at the landscape level is a crucial step to better simulate various ecological and physiological processes such as photosynthesis, respiration, transpiration, and precipitation interception. The LAIe products obtained from two-dimensional (2-D) remotely sensed optical imageries are usually biased due to their inability to identify the vertical forest structure and eliminate the effects of forest background (i.e., shrubs, grass, snow, and bare earth). In this study, we first stratified the forest overstory and background layers and generated a forest background mask layer based on the structural information implicitly contained within the aerial laser scanning (ALS) data. We improved the retrieval accuracy of LAIe by combining light detection and ranging (Lidar)-based three dimensional (3-D) structural and 2-D spectral information. Then, we obtained the improved final LAIe estimation result by masking the forest background pixels from the optical remotely sensed imageries. Our results showed that: (1) Removing forest background information could effectively (R2 increase from 20% to 30%) improve the estimation accuracy of optical-based forest LAIe depending on forest structure characteristics. (2) The forest background in the forest stands with low canopy cover showed more apparent effects on LAIe estimation compared with the forest stands with a high canopy cover. (3) The combination of ALS and optical remotely sensed data could produce the best LAIe retrieval result effectively by removing the forest background information.


Forests ◽  
2016 ◽  
Vol 7 (12) ◽  
pp. 87 ◽  
Author(s):  
Yuan Sun ◽  
Xinlian Liang ◽  
Ziyu Liang ◽  
Clive Welham ◽  
Weizheng Li

2011 ◽  
Vol 162 (6) ◽  
pp. 186-194 ◽  
Author(s):  
Hans Pretzsch ◽  
Stefan Seifert ◽  
Peng Huang

This paper addresses the potential of terrestrial laser scanning (TLS) for describing and modelling of tree crown structure and dynamics. We first present a general approach for the metabolic and structural scaling of tree crowns. Out of this approach we emphasize those normalization and scaling parameters which become accessible by TLS. For example we show how the individual tree leaf area index, convex hull, and its space-filling by leaves can be extracted out of laser scan data. This contributes to a theoretical and empirical substantiation of crown structure models which were missing so far for e.g. quantification of structural and species diversity in forest stands, inventory of crown biomass, species detection by remote sensing, and understanding of self- and alien-thinning in pure and mixed stands. Up to now works on this topic delivered a rather scattered empirical knowledge mainly by single inventories of trees and stands. In contrast, we recommend to start with a model approach, and to complete existing data with repeated TLS inventories in order to come to a consistent and theoretically based model of tree crowns.


2018 ◽  
Vol 427 ◽  
pp. 217-229 ◽  
Author(s):  
Atticus E.L. Stovall ◽  
Kristina J. Anderson-Teixeira ◽  
Herman H. Shugart

2020 ◽  
Vol 12 (21) ◽  
pp. 3592
Author(s):  
Chengjian Zhang ◽  
Guijun Yang ◽  
Youyi Jiang ◽  
Bo Xu ◽  
Xiao Li ◽  
...  

The branches of fruit trees provide support for the growth of leaves, buds, flowers, fruits, and other organs. The number and length of branches guarantee the normal growth, flowering, and fruiting of fruit trees and are thus important indicators of tree growth and yield. However, due to their low height and the high number of branches, the precise management of fruit trees lacks a theoretical basis and data support. In this paper, we introduce a method for extracting topological and structural information on fruit tree branches based on LiDAR (Light Detection and Ranging) point clouds and proved its feasibility for the study of fruit tree branches. The results show that based on Terrestrial Laser Scanning (TLS), the relative errors of branch length and number are 7.43% and 12% for first-order branches, and 16.75% and 9.67% for second-order branches. The accuracy of total branch information can reach 15.34% and 2.89%. We also evaluated the potential of backpack-LiDAR by comparing field measurements and quantitative structural models (QSMs) evaluations of 10 sample trees. This comparison shows that in addition to the first-order branch information, the information about other orders of branches is underestimated to varying degrees. The root means square error (RMSE) of the length and number of the first-order branches were 3.91 and 1.30 m, and the relative root means square error (NRMSE) was 14.62% and 11.96%, respectively. Our work represents the first automated classification of fruit tree branches, which can be used in support of precise fruit tree pruning, quantitative forecast of yield, evaluation of fruit tree growth, and the modern management of orchards.


Drones ◽  
2019 ◽  
Vol 3 (2) ◽  
pp. 32 ◽  
Author(s):  
Angus D. Warfield ◽  
Javier X. Leon

Mangroves provide a variety of ecosystem services, which can be related to their structuralcomplexity and ability to store carbon in the above ground biomass (AGB). Quantifying AGB inmangroves has traditionally been conducted using destructive, time-consuming, and costlymethods, however, Structure-from-Motion Multi-View Stereo (SfM-MVS) combined withunmanned aerial vehicle (UAV) imagery may provide an alternative. Here, we compared the abilityof SfM-MVS with terrestrial laser scanning (TLS) to capture forest structure and volume in threemangrove sites of differing stand age and species composition. We describe forest structure in termsof point density, while forest volume is estimated as a proxy for AGB using the surface differencingmethod. In general, SfM-MVS poorly captured mangrove forest structure, but was efficient incapturing the canopy height for volume estimations. The differences in volume estimations betweenTLS and SfM-MVS were higher in the juvenile age site (42.95%) than the mixed (28.23%) or mature(12.72%) age sites, with a higher stem density affecting point capture in both methods. These resultscan be used to inform non-destructive, cost-effective, and timely assessments of forest structure orAGB in mangroves in the future.


Sign in / Sign up

Export Citation Format

Share Document