scholarly journals Casparian bands occur in the periderm of Pelargonium hortorum stem and root

2011 ◽  
Vol 107 (4) ◽  
pp. 591-598 ◽  
Author(s):  
Chris J. Meyer ◽  
Carol A. Peterson
Keyword(s):  
2001 ◽  
Vol 79 (5) ◽  
pp. 621-634 ◽  
Author(s):  
Fengshan Ma ◽  
Carol A Peterson

The cytological events of wall modification in the endodermis and exodermis of Allium cepa L. roots were examined with fluorescence and transmission electron microscopy. In the endodermis, Casparian bands, suberin lamellae, and tertiary walls developed in succession. At the site of the future Casparian band, the plasma membrane was bound to the wall before deposition of detectable hydrophobic components in the radial wall. Suberin lamellae were deposited on the inner faces of the primary walls, first along the outer tangential walls and then the inner tangential walls. On both walls, segments of the lamellae were formed earlier in primary pit fields than at nonprimary pit field regions. Suberin lamellae then extended to the radial walls. When they reached the Casparian bands, the lamellae intruded between the bound plasma membranes and the walls, so that the cells' plasma membranes remained intact. In this way, suberin lamellae that were continuous around the cells were laid down. Later, tertiary walls were deposited internal to the suberin lamellae. None of the wall modifications interrupted the symplastic connections of the endodermis. During suberin lamella and tertiary wall formation, more dictyosomes and ER profiles appeared than during Casparian band development. In the exodermis, although Casparian bands were readily detected with fluorescence microscopy, they were rarely detected with electron microscopy. Suberin lamellae were formed in long cells severing their plasmodesmata. As in the endodermis, dictyosomes and ER were prominent during suberin lamella formation. Tertiary walls were not formed in the exodermis.Key words: Allium cepa, Casparian band, endodermis, exodermis, suberin lamella, ultrastructure.


1997 ◽  
Vol 75 (7) ◽  
pp. 1188-1199 ◽  
Author(s):  
Daryl E. Enstone ◽  
Carol A. Peterson

The exodermal Casparian band in corn (Zea mays L.) was first seen 10 mm distal to the kernel 4 days after planting. From its inception, the band usually occupied most of the radial wall (as seen in a cross section of the root). Subsequent maturation of the band around the root was asynchronous into the region of emerging lateral roots. Thus, a continuous apoplastic barrier would have been absent over much of the young root surface. Suberin lamellae development was also asynchronous, as these structures formed in those cells which had Casparian bands. Frequently, a lamella was initially deposited in patches, progressing centripetally until a continuous lipid layer was formed around the cell protoplast. Many instances of band plasmolysis (typical of the endodermis) were observed in the developing uniform exodermis. It could occur in cells with no detectable Casparian bands, suggesting that the tight connection between the plasmalemma and the wall that causes this phenomenon is not due to hydrophobic attractions. The results are consistent with the idea that there are strong attractions between proteins of the membrane and wall in the region of the Casparian band. The tight connection between the plasmalemma and the wall was broken during the later stages of suberin lamella development. Key words: Zea mays L., Poaceae, band plasmolysis, exodermis, Casparian band, suberin lamella.


1996 ◽  
Vol 74 (8) ◽  
pp. 1220-1226 ◽  
Author(s):  
Carol A. Peterson ◽  
Janet L. Waite

The onion exodermis is made up of two cell types, i.e., long and short cells. Both form Casparian bands, but suberin lamella development is absent or delayed in the short cells. Long cells did not accumulate fluorescein, a common test for cell vitality, because of reduced wall permeability due to suberin lamella development. Immature, long cells without lamellae stained in 15 min, whereas mature cells with lamellae required a 3.5- to 4-h treatment before staining was visible. Long exposure to fluorescein was needed to show that mature long cells were alive. Their vitality appeared to decline slowly with age but was not affected by drought stress. Fluorescein staining was apparent in the long cells only after treatment of paradermal sections; when dye was applied only externally to root segments, it did not enter the long cells from the epidermis or from the neighbouring short cells. This result indicates that the long cells were connected symplasmically to the cells of the cortex but were either unconnected, or connected by plasmodesmata of small functional diameter, to the epidermal and short cells. If they were unconnected, they would not form part of the symplasmic path of ion transfer into the root. Keywords: Allium cepa L., drought, exodermis, suberin lamella, vitality.


ÈKOBIOTEH ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 249-254
Author(s):  
R.S. Ivanov ◽  
◽  
G.V. Sharipova ◽  
G.R. Akhiyarova ◽  
◽  
...  

The study of plant adaptation mechanisms during the salt stress is required to provide an increase in plant productivity under such conditions. Along with a decrease in the availability of water for plants, the NaCL-induced inhibition of plant growth is associated with the toxic effect of sodium ions. The formation of apoplastic barriers due to the deposition of suberin and lignin restricts passive ion diffusion. However, the formation of such barriers reduces the capacity of the apoplastic pathway for water movement. In these conditions the role of transmembrane water transport is increased. This process is provided by aquaporin water channels. Thus the purpose of this work was to determine the contribution of aquaporins to hydraulic conductivity of peas plants under salinity-induced apoplastic barrier formation. An only slight decrease in plants transpiration caused by mercury chloride in the absence of salinization was in accordance with the ideas the apoplast is the dominant pathway when the Casparian bands is not formed yet. Salt stress in our experiments accelerated the development of the Casparian bands formation which could be visualized as an appearance of suberin strips in root endodermis which in turn was accompanied by a decrease in hydraulic conductivity. The decrease in hydraulic conductivity in 2 times during the mercury chloride treatment under salinity confirmed that contribution of aquaporins to the total hydraulic conductivity was increased under conditions when Casparian bands have had formed.


1998 ◽  
Vol 123 (5) ◽  
pp. 798-801 ◽  
Author(s):  
R. Larry Peterson ◽  
Gregory T. Varney ◽  
Shannon Binns

Primary and first-order lateral roots of Panax quinquefolius L. (American ginseng) were collected from plants in an experimental garden during their second year of growth and processed for light and transmission electron microscopy. Roots in primary growth had either a diarch or triarch primary xylem pattern, a pericycle, an endodermis with Casparian bands and subsequently a suberized cell wall, and a cortex of variable thickness with a suberized hypodermal layer. Both root types underwent rapid secondary growth and the primary root particularly formed a fleshy storage organ. The secondary phloem and secondary xylem had abundant parenchyma and few conducting elements. Secretory ducts differentiated in tissue derived from the pericycle and in the secondary phloem. Each schizogenous duct consisted of six to eight epithelial cells, which possessed dense, globular deposits but lacked starch. A phellogen, which produced several layers of suberized phellem, was initiated in the periphery of tissue derived from the pericycle. The results of this study clarify the anatomical localization of secretory duets in roots of this species.


2008 ◽  
Vol 11 (2) ◽  
pp. 238-242 ◽  
Author(s):  
Michio Kawasaki ◽  
Akiko Takatsuji ◽  
Mitsutaka Taniguchi ◽  
Hiroshi Miyake

Sign in / Sign up

Export Citation Format

Share Document