scholarly journals Temporal migration rates affect the genetic structure of populations in the biennial Erysimum mediohispanicum with reproductive asynchrony

AoB Plants ◽  
2020 ◽  
Vol 12 (4) ◽  
Author(s):  
A Jesús Muñoz-Pajares ◽  
Mohamed Abdelaziz ◽  
F Xavier Picó

Abstract Migration is a process with important implications for the genetic structure of populations. However, there is an aspect of migration seldom investigated in plants: migration between temporally isolated groups of individuals within the same geographic population. The genetic implications of temporal migration can be particularly relevant for semelparous organisms, which are those that reproduce only once in a lifetime after a certain period of growth. In this case, reproductive asynchrony in individuals of the same population generates demes of individuals differing in their developmental stage (non-reproductive and reproductive). These demes are connected by temporal migrants, that is, individuals that become annually asynchronous with respect to the rest of individuals of their same deme. Here, we investigated the extent of temporal migration and its effects on temporal genetic structure in the biennial plant Erysimum mediohispanicum. To this end, we conducted two independent complementary approaches. First, we empirically estimated temporal migration rates and temporal genetic structure in four populations of E. mediohispanicum during three consecutive years using nuclear microsatellites markers. Second, we developed a demographic genetic simulation model to assess genetic structure for different migration scenarios differing in temporal migration rates and their occurrence probabilities. We hypothesized that genetic structure decreased with increasing temporal migration rates due to the homogenizing effect of migration. Empirical and modelling results were consistent and indicated a U-shape relationship between genetic structure and temporal migration rates. Overall, they indicated the existence of temporal genetic structure and that such genetic structure indeed decreased with increasing temporal migration rates. However, genetic structure increased again at high temporal migration rates. The results shed light into the effects of reproductive asynchrony on important population genetic parameters. Our study contributes to unravel the complexity of some processes that may account for genetic diversity and genetic structure of natural populations.

2020 ◽  
Vol 12 (4) ◽  
pp. 443-455
Author(s):  
Michael Lynch ◽  
Wei-Chin Ho

Abstract The ability to obtain genome-wide sequences of very large numbers of individuals from natural populations raises questions about optimal sampling designs and the limits to extracting information on key population-genetic parameters from temporal-survey data. Methods are introduced for evaluating whether observed temporal fluctuations in allele frequencies are consistent with the hypothesis of random genetic drift, and expressions for the expected sampling variances for the relevant statistics are given in terms of sample sizes and numbers. Estimation methods and aspects of statistical reliability are also presented for the mean and temporal variance of selection coefficients. For nucleotide sites that pass the test of neutrality, the current effective population size can be estimated by a method of moments, and expressions for its sampling variance provide insight into the degree to which such methodology can yield meaningful results under alternative sampling schemes. Finally, some caveats are raised regarding the use of the temporal covariance of allele-frequency change to infer selection. Taken together, these results provide a statistical view of the limits to population-genetic inference in even the simplest case of a closed population.


Genetics ◽  
1991 ◽  
Vol 127 (3) ◽  
pp. 545-552
Author(s):  
D S Suh ◽  
T Mukai

Abstract Eight hundred second chromosomes were extracted from the Ishigakijima population, one of the southernmost populations of Drosophila melanogaster in Japan. Half of them were extracted in Native cytoplasm (P-type), and half in Foreign cytoplasm (M-type). Various population-genetic parameters, including the frequency of lethal-carrying second chromosomes (Q = 0.235 for the Native; 0.218 for the Foreign), the allelism rate of lethal second chromosome (Ic = 0.0217 for the Native; 0.0134 for the Foreign), the homozygous detrimental and lethal loads (D = 0.179 for the Native; 0.270 for the Foreign; L = 0.262 for the Native; 0.240 for the Foreign), the average degree of dominance of mildly deleterious mutations (ĥE = 0.244 for the Native; 0.208 for the Foreign), and the components of genetic variance for viability [additive (sigma A2) and dominance (sigma D2)](ŝigma A2 = 0.0187 for the Native; 0.0172 for the Foreign; ŝigma D2 = 0.0005 for the Native; 0.0009 for the Foreign) were estimated. The data indicate that D was significantly larger and hE was significantly smaller in the Foreign cytoplasm. However, the estimates of additive and dominance variances were not significantly different between the two cytoplasms. The additive genetic variance for viability in the Ishigakijima population was greater than expected on the basis of mutation-selection balance confirming previous studies on papers of D. melanogaster in warm climates.


Genetics ◽  
1980 ◽  
Vol 94 (1) ◽  
pp. 169-184
Author(s):  
Terumi Mukai

ABSTRACT Recent reports (MUKAI et al. 1974; KATZand CARDELLINO1978; COCKER-HAM and MUEAI 1978) have indicated that the Cy chromosome is not always dominant over its homologous chromosome with respect to viability. Thus,the genetic parameters previously estimated using viabilities determined by the Cy method are biased. In the present paper, the biases of the estimates for the polygenic mutation rate, the degree of dominance and the homozygous load are examined. The results indicate that the biases for the mutation rate and the degree ofdominance are small and that the estimate of the homozygous load relative to the average viability of the population is not biased.


Parasitology ◽  
2001 ◽  
Vol 123 (7) ◽  
pp. 27-40 ◽  
Author(s):  
P. JARNE ◽  
A. THÉRON

Several aspects of the coevolutionary dynamics in host-parasite systems may be better quantified based on analyses of population structure using neutral genetic markers. This includes, for example, the migration rates of hosts and parasites. In this respect, the current situation, especially in fluke-snail systems is unsatisfactory, since basic population genetics data are lacking and the appropriate methodology has rarely been used. After reviewing the forces acting on population structure (e.g. genetic drift or the mating system) and how they can be analysed in models of structured populations, we propose a simplified, indicative framework for conducting analyses of population structure in hosts and parasites. This includes consideration of markers, sampling, data analysis, comparison of structure in hosts and parasites and use of external data (e.g. from population dynamics). We then focus on flukes and snails, highlighting important biological traits with regard to population structure. The few available studies indicate that asexual amplification of flukes within snails strongly influences adult flukes populations. They also show that the genetic structure among populations in strongly affected by traits in other than snails (e.g. definitive host dispersal behaviour), as snails populations have limited migration. Finally more studies would allow us to deepen our current understanding of selective interference between flukes and snails (e.g. manipulation of host mating system by parasites), and evaluate how this affect population structure at neutral markers.


The Auk ◽  
2000 ◽  
Vol 117 (3) ◽  
pp. 651-662 ◽  
Author(s):  
Corinne Rabouam ◽  
Vincent Bretagnolle ◽  
Yves Bigot ◽  
Georges Periquet

Abstract We used DNA fingerprinting to assess genetic structure of populations in Cory's Shearwater (Calonectris diomedea). We analyzed mates and parent-offspring relationships, as well as the amount and distribution of genetic variation within and among populations, from the level of subcolony to subspecies. We found no evidence of extrapair fertilization, confirming that the genetic breeding system matches the social system that has been observed in the species. Mates were closely related, and the level of genetic relatedness within populations was within the range usually found in inbred populations. In contrast to previous studies based on allozymes and mtDNA polymorphism, DNA fingerprinting using microsatellites revealed consistent levels of genetic differentiation among populations. However, analyzing the two subspecies separately revealed that the pattern of genetic variation among populations did not support the model of isolation by distance. Natal dispersal, as well as historic and/or demographic events, probably contributed to shape the genetic structure of populations in the species.


Sign in / Sign up

Export Citation Format

Share Document