scholarly journals Pollinators drive floral evolution in an Atlantic Forest genus

AoB Plants ◽  
2020 ◽  
Vol 12 (5) ◽  
Author(s):  
Beatriz Neves ◽  
Igor M Kessous ◽  
Ricardo L Moura ◽  
Dayvid R Couto ◽  
Camila M Zanella ◽  
...  

Abstract Pollinators are important drivers of angiosperm diversification at both micro- and macroevolutionary scales. Both hummingbirds and bats pollinate the species-rich and morphologically diverse genus Vriesea across its distribution in the Brazilian Atlantic Forest. Here, we (i) determine if floral traits predict functional groups of pollinators as documented, confirming the pollination syndromes in Vriesea and (ii) test if genetic structure in Vriesea is driven by geography (latitudinal and altitudinal heterogeneity) or ecology (pollination syndromes). We analysed 11 floral traits of 58 Vriesea species and performed a literature survey of Vriesea pollination biology. The genealogy of haplotypes was inferred and phylogenetic analyses were performed using chloroplast (rps16-trnk and matK) and nuclear (PHYC) molecular markers. Floral traits accurately predict functional groups of pollinators in Vriesea. Genetic groupings match the different pollination syndromes. Species with intermediate position were found between the groups, which share haplotypes and differ morphologically from the typical hummingbird- and bat-pollinated flowers of Vriesea. The phylogeny revealed moderately to well-supported clades which may be interpreted as species complexes. Our results suggest a role of pollinators driving ecological isolation in Vriesea clades. Incipient speciation and incomplete lineage sorting may explain the overall low genetic divergence within and among morphologically defined species, precluding the identification of clear species boundaries. The intermediate species with mixed floral types likely represent a window into shifts between pollinator syndromes. This study reports the morphological-genetic continuum that may be typical of ongoing pollinator-driven speciation in biodiversity hotspots.

2021 ◽  
Author(s):  
Caitlin Cherryh ◽  
Bui Quang Minh ◽  
Rob Lanfear

AbstractMost phylogenetic analyses assume that the evolutionary history of an alignment (either that of a single locus, or of multiple concatenated loci) can be described by a single bifurcating tree, the so-called the treelikeness assumption. Treelikeness can be violated by biological events such as recombination, introgression, or incomplete lineage sorting, and by systematic errors in phylogenetic analyses. The incorrect assumption of treelikeness may then mislead phylogenetic inferences. To quantify and test for treelikeness in alignments, we develop a test statistic which we call the tree proportion. This statistic quantifies the proportion of the edge weights in a phylogenetic network that are represented in a bifurcating phylogenetic tree of the same alignment. We extend this statistic to a statistical test of treelikeness using a parametric bootstrap. We use extensive simulations to compare tree proportion to a range of related approaches. We show that tree proportion successfully identifies non-treelikeness in a wide range of simulation scenarios, and discuss its strengths and weaknesses compared to other approaches. The power of the tree-proportion test to reject non-treelike alignments can be lower than some other approaches, but these approaches tend to be limited in their scope and/or the ease with which they can be interpreted. Our recommendation is to test treelikeness of sequence alignments with both tree proportion and mosaic methods such as 3Seq. The scripts necessary to replicate this study are available at https://github.com/caitlinch/treelikeness


2017 ◽  
Author(s):  
Meng Wu ◽  
Jamie L. Kostyun ◽  
Matthew W. Hahn ◽  
Leonie Moyle

ABSTRACTPhylogenetic analyses of trait evolution can provide insight into the evolutionary processes that initiate and drive phenotypic diversification. However, recent phylogenomic studies have revealed extensive gene tree-species tree discordance, which can lead to incorrect inferences of trait evolution if only a single species tree is used for analysis. This phenomenon—dubbed “hemiplasy”—is particularly important to consider during analyses of character evolution in rapidly radiating groups, where discordance is widespread. Here we generate whole-transcriptome data for a phylogenetic analysis of 14 species in the plant genus Jaltomata (the sister clade to Solanum), which has experienced rapid, recent trait evolution, including in fruit and nectar color, and flower size and shape. Consistent with other radiations, we find evidence for rampant gene tree discordance due to incomplete lineage sorting (ILS) and several introgression events among the well-supported subclades. Since both ILS and introgression increase the probability of hemiplasy, we perform several analyses that take discordance into account while identifying genes that might contribute to phenotypic evolution. Despite discordance, the history of fruit color evolution in Jaltomata can be inferred with high confidence, and we find evidence of de novo adaptive evolution at individual genes associated with fruit color variation. In contrast, hemiplasy appears to strongly affect inferences about floral character transitions in Jaltomata, and we identify candidate loci that could arise either from multiple lineage-specific substitutions or standing ancestral polymorphisms. Our analysis provides a generalizable example of how to manage discordance when identifying loci associated with trait evolution in a radiating lineage.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jinyuan Chen ◽  
Guili Wu ◽  
Nawal Shrestha ◽  
Shuang Wu ◽  
Wei Guo ◽  
...  

Medicago and its relatives, Trigonella and Melilotus comprise the most important forage resources globally. The alfalfa selected from the wild relatives has been cultivated worldwide as the forage queen. In the Flora of China, 15 Medicago, eight Trigonella, and four Melilotus species are recorded, of which six Medicago and two Trigonella species are introduced. Although several studies have been conducted to investigate the phylogenetic relationship within the three genera, many Chinese naturally distributed or endemic species are not included in those studies. Therefore, the taxonomic identity and phylogenetic relationship of these species remains unclear. In this study, we collected samples representing 18 out of 19 Chinese naturally distributed species of these three genera and three introduced Medicago species, and applied an integrative approach by combining evidences from population-based morphological clusters and molecular data to investigate species boundaries. A total of 186 individuals selected from 156 populations and 454 individuals from 124 populations were collected for genetic and morphological analyses, respectively. We sequenced three commonly used DNA barcodes (trnH-psbA, trnK-matK, and ITS) and one nuclear marker (GA3ox1) for phylogenetic analyses. We found that 16 out of 21 species could be well delimited based on phylogenetic analyses and morphological clusters. Two Trigonella species may be merged as one species or treated as two subspecies, and Medicago falcata should be treated as a subspecies of the M. sativa complex. We further found that major incongruences between the chloroplast and nuclear trees mainly occurred among the deep diverging lineages, which may be resulted from hybridization, incomplete lineage sorting and/or sampling errors. Further studies involving a finer sampling of species associated with large scale genomic data should be employed to better understand the species delimitation of these three genera.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Ting Ren ◽  
Zi-Xuan Li ◽  
Deng-Feng Xie ◽  
Ling-Jian Gui ◽  
Chang Peng ◽  
...  

Abstract Background The genus Ligusticum consists of approximately 60 species distributed in the Northern Hemisphere. It is one of the most taxonomically difficult taxa within Apiaceae, largely due to the varied morphological characteristics. To investigate the plastome evolution and phylogenetic relationships of Ligusticum, we determined the complete plastome sequences of eight Ligusticum species using a de novo assembly approach. Results Through a comprehensive comparative analysis, we found that the eight plastomes were similar in terms of repeat sequence, SSR, codon usage, and RNA editing site. However, compared with the other seven species, L. delavayi exhibited striking differences in genome size, gene number, IR/SC borders, and sequence identity. Most of the genes remained under the purifying selection, whereas four genes showed relaxed selection, namely ccsA, rpoA, ycf1, and ycf2. Non-monophyly of Ligusticum species was inferred from the plastomes and internal transcribed spacer (ITS) sequences phylogenetic analyses. Conclusion The plastome tree and ITS tree produced incongruent tree topologies, which may be attributed to the hybridization and incomplete lineage sorting. Our study highlighted the advantage of plastome with mass informative sites in resolving phylogenetic relationships. Moreover, combined with the previous studies, we considered that the current taxonomy system of Ligusticum needs to be improved and revised. In summary, our study provides new insights into the plastome evolution, phylogeny, and taxonomy of Ligusticum species.


2019 ◽  
Author(s):  
Lars Nauheimer ◽  
Lujing Cui ◽  
Charles Clarke ◽  
Darren M. Crayn ◽  
Greg Bourke ◽  
...  

Nepenthes is a genus of carnivorous plants consisting of ~160 species that are distributed in the paleotropics. Molecular systematics has so far not been able to resolve evolutionary relationships of most species because of the limited genetic divergence in previous studies. In the present study, we used a genome-skimming approach to infer phylogenetic relationships on the basis of 81 plastid genes and the highly repetitive rRNA (external transcribed spacer (ETS)–26S) for 39 accessions representing 34 species from eight sections. Maximum-likelihood analysis and Bayesian inference were performed separately for the nuclear and the plastid datasets. Divergence-time estimations were conducted on the basis of a relaxed molecular-clock model, using secondary calibration points. The phylogenetic analyses of the nuclear and plastid datasets yielded well resolved and supported phylogenies. Incongruences between the two datasets were detected, suggesting multiple hybridisation events or incomplete lineage sorting in the deeper and more recent evolutionary history of the genus. The inclusion of several known and suspected hybrids in the phylogenetic analysis provided insights into their parentage. Divergence-time estimations placed the crown diversification of Nepenthes in the early Miocene, c. 20 million years ago. This study showed that genome skimming provides well resolved nuclear and plastid phylogenies that provide valuable insights into the complex evolutionary relationships of Nepenthes.


Author(s):  
Rosa M. Ros ◽  
Olaf Werner ◽  
Ron D. Porley

The morphologically variable moss Trichostomum brachydontium is very common in south and west Europe, particularly under Mediterranean and Atlantic climates. A morphological study was conducted alongside a molecular phylogenetic study based on nr ITS and cp rbcL regions in order to assess if T. brachydontium is an exceptionally polymorphic species as evidenced by the number of described infraspecific taxa from the last century or, alternatively, if it includes more than one species, and if so, to find the valid name for them. Phylogenetic analyses of both nuclear and chloroplast datasets show that there are four well-supported clades. While the ITS based tree is in good agreement with the morphological data, there are a few inconsistencies with reference to the rbcL tree; this may be explained by incomplete lineage sorting or by hybridization. The morphological survey revealed well-defined discriminate differences between the four phylogenetic lineages. The taxonomic conclusions include the recognition of four species: T. brachydontium s.s., T. herzogii (a new name proposed for var. cuspidatum), T. littorale and T. meridionale (a new name proposed for var. densum). Lectotypes are designated for T. brachydontium and T. littorale. Our results underline the ongoing need of integrative studies to examine further the underestimated diversity of the T. brachydontium complex in other regions.


2021 ◽  
Author(s):  
Niklas Reichelt ◽  
Jun Wen ◽  
Claudia Paetzold ◽  
Marc Appelhans

Background and aims: Zanthoxylum L. is the only pantropical genus within Rutaceae, with a few species native to temperate eastern Asia and North America. Efforts using Sanger sequencing failed to resolve the backbone phylogeny of Zanthoxylum. In this study, we employed target enrichment high-throughput sequencing to improve resolution. Gene trees were examined for concordance and sectional classifications of Zanthoxylum were evaluated. Off-target reads were investigated to identify putative single-copy markers for bait refinement, and low-copy markers for evidence of putative hybridization events. Methods: We developed a custom bait set for target enrichment of 745 exons in Zanthoxylum and applied it to 45 Zanthoxylum species and one Tetradium species as the outgroup. Illumina reads were processed via the HybPhyloMaker pipeline. Phylogenetic inferences were conducted using coalescent and concatenated methods. Concordance was assessed using quartet sampling. Off-target reads were assembled and putative single- and low-copy genes were extracted. Additional phylogenetic analyses were performed based on these alignments. Key results: Four major clades are supported within Zanthoxylum: the African clade, the Z. asiaticum clade, the Asian-Pacific-Australian clade, and the American-eastern Asian clade. While overall support has improved, regions of conflict are similar to those previously observed. Gene tree discordances indicate a hybridization event in the ancestor of the Hawaiian lineage, and incomplete lineage sorting for the American backbone. Off-target putative single-copy genes largely confirm on-target results, and putative low-copy genes provide additional evidence for hybridization in the Hawaiian lineage. Only two of the five sections of Zanthoxylum are resolved as monophyletic. Conclusion: Target enrichment is suitable to assess phylogenetic relationships in Zanthoxylum. Our phylogenetic analyses reveal that current sectional classifications need revision. Quartet tree concordance indicates several instances of reticulate evolution. Off-target reads are proven useful to identify additional phylogenetically informative regions for bait refinement or gene tree based approaches.


Genome ◽  
2011 ◽  
Vol 54 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Pairot Pramual ◽  
Komgrit Wongpakam ◽  
Peter H. Adler

Understanding the medical, economic, and ecological importance of black flies relies on correct identification of species. However, traditional taxonomy of black flies is impeded by a high degree of morphological uniformity, especially the presence of cryptic biodiversity, historically recognized by details of chromosomal banding patterns. We assess the utility of DNA barcoding, based on cytochrome c oxidase subunit 1 (COI) sequences, for identifying 13 species of Oriental black flies in the subgenus Gomphostilbia. Samples of larvae fixed in Carnoy’s solution were used to gather molecular and chromosomal data from the same individual. We found that larvae refrigerated in Carnoy’s fixative for as long as 11 years can be used for DNA study. Levels of intraspecific genetic divergence, based on the Kimura-2 parameter, range from 0% to 9.28%, with a mean of 2.75%, whereas interspecific genetic divergence ranges from 0.34% to 16.05%. Values of intraspecific and interspecific genetic divergence overlap in seven species owing to incomplete lineage sorting and imperfect taxonomy, implying that DNA barcoding to identify these species will be ambiguous. Despite a low level of success, we found that DNA barcoding is useful in revealing cryptic biodiversity, potentially facilitating traditional taxonomy. Phylogenetic analyses indicate that species groups currently recognized on morphological criteria are not monophyletic, suggesting a need to reevaluate the classification of the subgenus Gomphostilbia.


Author(s):  
Kevin Karbstein ◽  
Salvatore Tomasello ◽  
Ladislav Hodac ◽  
Franz G. Dunkel ◽  
Mareike Daubert ◽  
...  

AbstractSpecies are the basic units of biodiversity and evolution. Nowadays, they are widely considered as ancestor-descendant lineages. Their definition remains a persistent challenge for taxonomists due to lineage evolutionary role and circumscription, i.e., persistence in time and space, ecological niche or a shared phenotype of a lineage. Recognizing and delimiting species is particularly methodically challenging in fast-evolving, evolutionary young species complexes often characterized by low genetic divergence, hybrid origin, introgression and incomplete lineage sorting (ILS). Ranunculus auricomus is a large Eurasian apomictic polyploid complex that probably has arisen from the hybridization of a few sexual progenitor species. However, even delimitation and relationships of diploid sexual progenitors have been unclearly ranging from two to twelve species. Here, we present an innovative workflow combining phylogenomic methods based on 86,782 parameter-optimized RADseq loci and target enrichment of 663 nuclear genes together with geometric morphometrics to delimit sexual species in this evolutionary young complex (< 1 Mya). For the first time, we revealed a fully resolved and well-supported maximum likelihood (ML) tree phylogeny congruent to neighbor-net network and STRUCTURE results based on RADseq data. In a few clades, we found evidence of discordant patterns indicated by quartet sampling (QS) and reticulation events in the neighbor-net network probably caused by introgression and ILS. Together with coalescent-based species delimitation approaches based on target enrichment data, we found five main genetic lineages, with an allopatric distribution in Central and Southern Europe. A concatenated geometric morphometric data set including basal and stem leaves, as well as receptacles, revealed the same five main clusters. We accept those five morphologically differentiated, geographically isolated, genetic main lineages as species: R. cassubicifolius s.l. (incl. R. carpaticola), R. flabellifolius, R. envalirensis s.l. (incl. R. cebennensis), R. marsicus and R. notabilis s.l. (incl. R. austroslovenicus, R. calapius, R. mediocompositus, R. peracris and R. subcarniolicus). Our comprehensive workflow combing phylogenomic methods supported by geometric morphometrics proved to be successful in delimiting closely related sexual taxa and applying an evolutionary species concept, which is also transferable to other evolutionarily young species complexes.


2021 ◽  
Author(s):  
Vanina Tonzo ◽  
AdriÀ Bellvert ◽  
Joaquín Ortego

AbstractInferring the ecological and evolutionary processes underlying lineage and phenotypic diversification is of paramount importance to shed light on the origin of contemporary patterns of biological diversity. However, reconstructing phylogenetic relationships in recent evolutionary radiations represents a major challenge due to the frequent co-occurrence of incomplete lineage sorting and introgression. In this study, we combined high throughput sequence data (ddRADseq), geometric morphometric information, and novel phylogenetic inference methods that explicitly account for gene flow to infer the evolutionary relationships and the timing and mode of diversification in a complex of Ibero-Maghrebian montane grasshoppers of the subgenus Dreuxius (genus Omocestus). Our analyses supported the phenotypic distinctiveness of most sister taxa, two events of historical introgression involving lineages at different stages of the diversification continuum, and the recent Pleistocene origin (< 1 Ma) of the complex. Phylogenetic analyses did not recover the reciprocal monophyly of taxa from Iberia and northwestern Africa, supporting overseas migration between the two continents during the Pleistocene. Collectively, these results indicate that periods of isolation and secondary contact linked to Pleistocene glacial cycles likely contributed to both allopatric speciation and post divergence gene flow in the complex. This study exemplifies how the integration of multiple lines of evidence can help to reconstruct complex histories of reticulated evolution and highlights the important role of Quaternary climatic oscillations as a diversification engine in the Ibero-Maghrebian biodiversity hotspot.


Sign in / Sign up

Export Citation Format

Share Document