scholarly journals The Effect of Protective Headgear on Frequency and Magnitude of Impacts in Girls’ High School Varsity Lacrosse

2019 ◽  
Vol 34 (5) ◽  
pp. 742-742
Author(s):  
P M Kelshaw ◽  
A E Lincoln ◽  
L H Hepburn ◽  
D C Herman ◽  
H K Vincent ◽  
...  

Abstract Purpose In an effort to reduce head and facial injuries in girls’ lacrosse, ASTM F3137-approved headgear for girls’ lacrosse was developed. However, the effect of wearing headgear on impacts during girls’ lacrosse game play is unknown. This study aimed to evaluate differences in impact rates and magnitudes across two conditions (No Headgear, and Headgear) during girls’ lacrosse games. Methods Thirty-five female participants (16.2±1.2years, 1.66±0.05m, 61.2±6.4kg) volunteered for this study during 18 games in the 2016 (No Headgear), and 15 games in the 2017 (Headgear) lacrosse seasons. All participants were instrumented with wearable sensors (X2 Biosystems) prior to each game paired with video verification. Results There were a total of 700 sensor-instrumented player-games. A total of 204 impacts ≥ 20g recorded by the wearable sensors were verified using video analysis (102 No Headgear; 102 Headgear). Impact rates did not vary between the No Headgear and Headgear conditions (0.27 vs 0.31 AEs/per team game, IRR=0.87, 95% CI=0.66, 1.14). The No Headgear condition experienced higher magnitudes (median peak linear acceleration (PLA)=26.9g and peak rotational velocity (PRV)=1578.6 deg/s) than the Headgear conditions (median PLA=24.7g; Z= –2.6, P<. 0.01 and PRV=1304.2 deg/s; Z = –2.6, P<. 0.01). No game-related concussions were reported during this two-year study. Conclusion There were no meaningful differences between impact rates and only slight differences in impact magnitudes in the No Headgear and Headgear groups. Further research should be conducted with a larger sample and different levels of play to evaluate the consequences of ASTM F3137-approved headgear on impacts, injury risk, and game play.

2017 ◽  
Vol 45 (10) ◽  
pp. 2379-2387 ◽  
Author(s):  
Nelson Cortes ◽  
Andrew E. Lincoln ◽  
Gregory D. Myer ◽  
Lisa Hepburn ◽  
Michael Higgins ◽  
...  

Background: Wearable sensors are increasingly used to quantify the frequency and magnitude of head impact events in multiple sports. There is a paucity of evidence that verifies head impact events recorded by wearable sensors. Purpose: To utilize video analysis to verify head impact events recorded by wearable sensors and describe the respective frequency and magnitude. Study Design: Cohort study (diagnosis); Level of evidence, 2. Methods: Thirty male (mean age, 16.6 ± 1.2 years; mean height, 1.77 ± 0.06 m; mean weight, 73.4 ± 12.2 kg) and 35 female (mean age, 16.2 ± 1.3 years; mean height, 1.66 ± 0.05 m; mean weight, 61.2 ± 6.4 kg) players volunteered to participate in this study during the 2014 and 2015 lacrosse seasons. Participants were instrumented with GForceTracker (GFT; boys) and X-Patch sensors (girls). Simultaneous game video was recorded by a trained videographer using a single camera located at the highest midfield location. One-third of the field was framed and panned to follow the ball during games. Videographic and accelerometer data were time synchronized. Head impact counts were compared with video recordings and were deemed valid if (1) the linear acceleration was ≥20 g, (2) the player was identified on the field, (3) the player was in camera view, and (4) the head impact mechanism could be clearly identified. Descriptive statistics of peak linear acceleration (PLA) and peak rotational velocity (PRV) for all verified head impacts ≥20 g were calculated. Results: For the boys, a total recorded 1063 impacts (2014: n = 545; 2015: n = 518) were logged by the GFT between game start and end times (mean PLA, 46 ± 31 g; mean PRV, 1093 ± 661 deg/s) during 368 player-games. Of these impacts, 690 were verified via video analysis (65%; mean PLA, 48 ± 34 g; mean PRV, 1242 ± 617 deg/s). The X-Patch sensors, worn by the girls, recorded a total 180 impacts during the course of the games, and 58 (2014: n = 33; 2015: n = 25) were verified via video analysis (32%; mean PLA, 39 ± 21 g; mean PRV, 1664 ± 619 rad/s). Conclusion: The current data indicate that existing wearable sensor technologies may substantially overestimate head impact events. Further, while the wearable sensors always estimated a head impact location, only 48% of the impacts were a result of direct contact to the head as characterized on video. Using wearable sensors and video to verify head impacts may decrease the inclusion of false-positive impacts during game activity in the analysis.


2020 ◽  
Vol 8 (12) ◽  
pp. 232596712096968
Author(s):  
Shane V. Caswell ◽  
Patricia M. Kelshaw ◽  
Andrew E. Lincoln ◽  
Daniel C. Herman ◽  
Lisa H. Hepburn ◽  
...  

Background: Girls’ lacrosse headgear that met the ASTM International performance standard (ASTM F3137) became available in 2017. However, the effects of headgear use on impact forces during game play are unknown. Purpose: To evaluate potential differences in rates, magnitudes, and game-play characteristics associated with verified impacts among players with and without headgear during competition. Study Design: Cohort study; Level of evidence, 3. Methods: A total of 49 female high school participants (mean age, 16.2 ± 1.2 years; mean height, 1.66 ± 0.05 m; mean weight, 61.2 ± 6.4 kg) volunteered for this study, which took place during the 2016 (no headgear; 18 games) and 2017 (headgear; 15 games) seasons. Wearable sensors synchronized with video verification were used. Descriptive statistics, impact rates, and chi-square analyses described impacts and game-play characteristics among players with and without headgear. Differences in mean peak linear acceleration (PLA) and peak rotational velocity (PRV) between the no headgear and headgear conditions were evaluated using a linear generalized estimating equation regression model to control for repeated within-player measurements. Results: Overall, 649 sensor-instrumented player-games were recorded. A total of 204 impacts ≥20 g recorded by the wearable sensors were verified with video analysis (102 no headgear; 102 headgear). Most impacts were imparted to the player’s body (n = 152; 74.5%) rather than to the player’s head (n = 52; 25.5%). Impact rates per player-game did not vary between the no headgear and headgear conditions (0.30 vs 0.34, respectively; impact rate ratio, 0.88 [95% CI, 0.37-2.08]). There was no association between impact frequency by mechanism or penalties administered between the no headgear and headgear conditions for overall or direct head impacts. The generalized estimating equation model estimated a significant reduction in mean impact magnitudes overall (PLA: –7.9 g [95% CI, –13.3 to –2.5]; PRV: –212 deg/s [95% CI, –359 to –64]) with headgear relative to no headgear. No game-related concussions were reported during this study. Conclusion: Lacrosse headgear use was associated with a reduction in the magnitude of overall impacts but not a significant change in the rate of impacts, how they occur, or how penalties were administered for impacts sustained during competition. Further research is needed with a larger sample and different levels of play to evaluate the consequences of headgear use in girls’ lacrosse.


2019 ◽  
Vol 7 (4) ◽  
pp. 232596711983558 ◽  
Author(s):  
Shane V. Caswell ◽  
Patricia Kelshaw ◽  
Andrew E. Lincoln ◽  
Lisa Hepburn ◽  
Reginald Dunn ◽  
...  

Background: The rate of concussions in boys’ lacrosse is reported to be the third highest among high school sports in the United States, but no studies have described game-related impacts among boys’ lacrosse players. Purpose: To characterize verified game-related impacts, both overall and those directly to the head, in boys’ varsity high school lacrosse. Study Design: Cross-sectional study; Level of evidence, 3. Methods: A total of 77 male participants (mean age, 16.6 ± 1.2 years; mean height, 1.77 ± 0.05 m; mean weight, 73.4 ± 12.2 kg) were instrumented with sensors and were videotaped during 39 games. All verified game-related impacts ≥20 g were summarized in terms of frequency, peak linear acceleration (PLA), and peak rotational velocity (PRV). Descriptive statistics and impact rates per player-game (PG) with corresponding 95% CIs were calculated. Results: Overall, 1100 verified game-related impacts were recorded (PLA: median, 33.5 g [interquartile range (IQR), 25.7-51.2]; PRV: median, 1135.5 deg/s [IQR, 790.0-1613.8]) during 795 PGs. The rate for all verified game-related impacts was 1.38 impacts per PG (95% CI, 1.30-1.47). Of these, 680 (61.8%) impacts (PLA: median, 35.9 g [IQR, 26.7-55.5]; PRV: 1170.5 deg/s [IQR, 803.2-1672.8]) were directly to the head (impact rate, 0.86 impacts/PG [95% CI, 0.79-0.92]). Overall, midfielders (n = 514; 46.7%) sustained the most impacts, followed by attackers (n = 332; 30.2%), defenders (n = 233; 21.2%), and goalies (n = 21; 1.9%). The most common mechanisms for overall impacts and direct head impacts were contact with player (overall: n = 706 [64.2%]; head: n = 397 [58.4%]) and stick (overall: n = 303 [27.5%]; head: n = 239 [35.1%]), followed by ground (overall: n = 73 [6.6%]; head: n = 26 [3.8%]) and ball (overall: n = 15 [1.4%]; head: n = 15 [2.2%]). Direct head impacts were associated with a helmet-to-helmet collision 31.2% of the time, and they were frequently (53.7%) sustained by the players delivering the impact. Nearly half (48.8%) of players delivering contact used their helmets to initiate contact that resulted in a helmet-to-helmet impact. Players receiving a head impact from player contact were most often unprepared (75.9%) for the collision. Conclusion: The helmet is commonly used to initiate contact in boys’ high school lacrosse, often targeting defenseless opponents. Interventions to reduce head impacts should address rules and coaching messages to discourage intentional use of the helmet and encourage protection of defenseless opponents.


2017 ◽  
Vol 19 (6) ◽  
pp. 662-667 ◽  
Author(s):  
David M. O'Sullivan ◽  
Gabriel P. Fife

OBJECTIVEThe purpose of this study was to monitor head impact magnitude and characteristics, such as impact location and frequency, at high school taekwondo sparring sessions.METHODSEight male high school taekwondo athletes participated in this study. The head impact characteristics were recorded by X-Patch, a wireless accelerometer and gyroscope, during 6 taekwondo sparring sessions. The outcome measures were the peak linear acceleration (g = 9.81 msec2), peak rotational acceleration, rotational velocity, and Head Injury Criterion.RESULTSA total of 689 impacts occurred over 6 sessions involving the 8 athletes. There was an average of 24 impacts per 100 minutes, and there were significant differences in the frequency of impacts among both the sessions and individual athletes. In order of frequency, the most commonly hit locations were the side (38.2%), back (35.7%), and front (23.8%) of the head.CONCLUSIONSThe data indicate that there is a relatively high number of head impacts experienced by taekwondo athletes during sparring practice. According to the rotational acceleration predicting impact severity published in previous research, 17.1% of the impacts were deemed to be a moderate and 15.5% were deemed to be severe.


Neurology ◽  
2018 ◽  
Vol 91 (23 Supplement 1) ◽  
pp. S2.2-S2
Author(s):  
Mirellie Kelley ◽  
Jillian Urban ◽  
Derek Jones ◽  
Alexander Powers ◽  
Christopher T. Whitlow ◽  
...  

Approximately 1.1–1.9 million sport-related concussions among athletes ≤18 years of age occur annually in the United States, but there is limited understanding of the biomechanics and injury mechanisms associated with concussions among lower level football athletes. Therefore, the objective of this study was to combine biomechanical head impact data with video analysis to characterize youth and HS football concussion injury mechanisms. Head impact data were collected from athletes participating on 22 youth and 6 HS football teams between 2012 and 2017. Video was recorded, and head impact data were collected during all practices and games by instrumenting players with the Head Impact Telemetry (HIT) System. For each clinically diagnosed concussion, a video abstraction form was completed, which included questions concerning the context in which the injury occurred. Linear acceleration, rotational acceleration, and impact location were used to characterize the concussive event and each injured athlete's head impact exposure on the day of the concussion. A total of 9 (5 HS and 4 youth) concussions with biomechanics and video of the event were included in this study. The mean [range] linear and rotational acceleration of the concussive impacts were 62.9 [29.3–118.4] g and 3,056.7 [1,046.8–6,954.6] rad/s2, respectively. Concussive impacts were the highest magnitude impacts for 6 players and in the top quartile of impacts for 3 players on the day of injury. Concussions occurred in both practices (N = 4) and games (N = 5). The most common injury contact surface was helmet-to-helmet (N = 5), followed by helmet-to-ground (N = 3) and helmet-to-body (N = 1). All injuries occurred during player-to-player contact scenarios, including tackling (N = 4), blocking (N = 4), and collision with other players (N = 1). The biomechanics and injury mechanisms of concussions varied among athletes in our study; however, concussive impacts were among the highest severity for each player and all concussions occurred as a result of player-to-player contact.


1991 ◽  
Vol 14 (2) ◽  
pp. 129-136 ◽  
Author(s):  
Nina M. Coppens ◽  
Lois Krehel Gentry
Keyword(s):  

2014 ◽  
Vol 39 (1) ◽  
Author(s):  
Bob De Schutter ◽  
Steven Malliet

AbstractThe current study aims to integrate the findings of previous research on the use of video games by older adults by applying the Uses & Gratifications (U&GT) paradigm (Blumler and Katz, 1974). A qualitative study was performed with 35 participants aged between 50 and 74, who were selected from a larger sample of 213. Based upon their primary playing motives and the gratifications they obtain from digital game play, a classification was developed, resulting in five categories of older adults who actively play games: “time wasters”, “freedom fighters”, “compensators”, “value seekers” and “ludophiles”.


Sign in / Sign up

Export Citation Format

Share Document