scholarly journals BreastGAN: Artificial Intelligence-Enabled Breast Augmentation Simulation

Author(s):  
Christian Chartier ◽  
Ayden Watt ◽  
Owen Lin ◽  
Akash Chandawarkar ◽  
James Lee ◽  
...  

Abstract Background Managing patient expectations is important to ensuring patient satisfaction in aesthetic medicine. To this end, computer technology developed to photograph, digitize, and manipulate three-dimensional (3D) objects has been applied to the female breast. However, the systems remain complex, physically cumbersome, and extremely expensive. Objectives The authors of the current study wish to introduce the plastic surgery community to BreastGAN, a portable, artificial intelligence-equipped tool trained on real clinical images to simulate breast augmentation outcomes. Methods Charts of all patients who underwent bilateral breast augmentation performed by the senior author were retrieved and analyzed. Frontal before and after images were collected from each patient’s chart, cropped in a standardized fashion, and used to train a neural network designed to manipulate before images to simulate a surgical result. AI-generated frontal after images were then compared to the real surgical results. Results Standardizing the evaluation of surgical results is a timeless challenge which persists in the context of AI-synthesized after images. In this study, AI-generated images were comparable to real surgical results. Conclusions This study features a portable, cost-effective neural network trained on real clinical images and designed to simulate surgical results following bilateral breast augmentation. Tools trained on a larger dataset of standardized surgical image pairs will be the subject of future studies.

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2338
Author(s):  
Sofia Agostinelli ◽  
Fabrizio Cumo ◽  
Giambattista Guidi ◽  
Claudio Tomazzoli

The research explores the potential of digital-twin-based methods and approaches aimed at achieving an intelligent optimization and automation system for energy management of a residential district through the use of three-dimensional data model integrated with Internet of Things, artificial intelligence and machine learning. The case study is focused on Rinascimento III in Rome, an area consisting of 16 eight-floor buildings with 216 apartment units powered by 70% of self-renewable energy. The combined use of integrated dynamic analysis algorithms has allowed the evaluation of different scenarios of energy efficiency intervention aimed at achieving a virtuous energy management of the complex, keeping the actual internal comfort and climate conditions. Meanwhile, the objective is also to plan and deploy a cost-effective IT (information technology) infrastructure able to provide reliable data using edge-computing paradigm. Therefore, the developed methodology led to the evaluation of the effectiveness and efficiency of integrative systems for renewable energy production from solar energy necessary to raise the threshold of self-produced energy, meeting the nZEB (near zero energy buildings) requirements.


10.28945/4838 ◽  
2021 ◽  
Vol 16 ◽  
pp. 331-369
Author(s):  
Anshul Jain ◽  
Tanya Singh ◽  
Satyendra Kumar Sharma

Aim/Purpose: The primary purpose of this study is to provide a cost-effective and artificial intelligence enabled security solution for IoT enabled healthcare ecosystem. It helps to implement, improve, and add new attributes to healthcare services. The paper aims to develop a method based on an artificial neural network technique to predict suspicious devices based on bandwidth usage. Background: COVID has made it mandatory to make medical services available online to every remote place. However, services in the healthcare ecosystem require fast, uninterrupted facilities while securing the data flowing through them. The solution in this paper addresses both the security and uninterrupted services issue. This paper proposes a neural network based solution to detect and disable suspicious devices without interrupting critical and life-saving services. Methodology: This paper is an advancement on our previous research, where we performed manual knowledge-based intrusion detection. In this research, all the experiments were executed in the healthcare domain. The mobility pattern of the devices was divided into six parts, and each one is assigned a dedicated slice. The security module regularly monitored all the clients connected to slices, and machine learning was used to detect and disable the problematic or suspicious devices. We have used MATLAB’s neural network to train the dataset and automatically detect and disable suspicious devices. The different network architectures and different training algorithms (Levenberg–Marquardt and Bayesian Framework) in MATLAB software have attempted to achieve more precise values with different properties. Five iterations of training were executed and compared to get the best result of R=99971. We configured the application to handle the four most applicable use cases. We also performed an experimental application simulation for the assessment and validation of predictions. Contribution: This paper provides a security solution for the IoT enabled healthcare system. The architectures discussed suggest an end-to-end solution on the sliced network. Efficient use of artificial neural networks detects and block suspicious devices. Moreover, the solution can be modified, configured and deployed in many other ecosystems like home automation. Findings: This simulation is a subset of the more extensive simulation previously performed on the sliced network to enhance its security. This paper trained the data using a neural network to make the application intelligent and robust. This enhancement helps detect suspicious devices and isolate them before any harm is caused on the network. The solution works both for an intrusion detection and prevention system by detecting and blocking them from using network resources. The result concludes that using multiple hidden layers and a non-linear transfer function, logsig improved the learning and results. Recommendations for Practitioners: Everything from offices, schools, colleges, and e-consultation is currently happening remotely. It has caused extensive pressure on the network where the data flowing through it has increased multifold. Therefore, it becomes our joint responsibility to provide a cost-effective and sustainable security solution for IoT enabled healthcare services. Practitioners can efficiently use this affordable solution compared to the expensive security options available in the commercial market and deploy it over a sliced network. The solution can be implemented by NGOs and federal governments to provide secure and affordable healthcare monitoring services to patients in remote locations. Recommendation for Researchers: Research can take this solution to the next level by integrating artificial intelligence into all the modules. They can augment this solution by making it compatible with the federal government’s data privacy laws. Authentication and encryption modules can be integrated to enhance it further. Impact on Society: COVID has given massive exposure to the healthcare sector since last year. With everything online, data security and privacy is the next most significant concern. This research can be of great support to those working for the security of health care services. This paper provides “Security as a Solution”, which can enhance the security of an otherwise less secure ecosystem. The healthcare use cases discussed in this paper address the most common security issues in the IoT enabled healthcare ecosystem. Future Research: We can enhance this application by including data privacy modules like authentication and authorisation, data encryption and help to abide by the federal privacy laws. In addition, machine learning and artificial intelligence can be extended to other modules of this application. Moreover, this experiment can be easily applicable to many other domains like e-homes, e-offices and many others. For example, e-homes can have devices like kitchen equipment, rooms, dining, cars, bicycles, and smartwatches. Therefore, one can use this application to monitor these devices and detect any suspicious activity.


2020 ◽  
pp. 1-12
Author(s):  
Wu Xin ◽  
Qiu Daping

The inheritance and innovation of ancient architecture decoration art is an important way for the development of the construction industry. The data process of traditional ancient architecture decoration art is relatively backward, which leads to the obvious distortion of the digitalization of ancient architecture decoration art. In order to improve the digital effect of ancient architecture decoration art, based on neural network, this paper combines the image features to construct a neural network-based ancient architecture decoration art data system model, and graphically expresses the static construction mode and dynamic construction process of the architecture group. Based on this, three-dimensional model reconstruction and scene simulation experiments of architecture groups are realized. In order to verify the performance effect of the system proposed in this paper, it is verified through simulation and performance testing, and data visualization is performed through statistical methods. The result of the study shows that the digitalization effect of the ancient architecture decoration art proposed in this paper is good.


2020 ◽  
pp. 1-11
Author(s):  
Wenjuan Ma ◽  
Xuesi Zhao ◽  
Yuxiu Guo

The application of artificial intelligence and machine learning algorithms in education reform is an inevitable trend of teaching development. In order to improve the teaching intelligence, this paper builds an auxiliary teaching system based on computer artificial intelligence and neural network based on the traditional teaching model. Moreover, in this paper, the optimization strategy is adopted in the TLBO algorithm to reduce the running time of the algorithm, and the extracurricular learning mechanism is introduced to increase the adjustable parameters, which is conducive to the algorithm jumping out of the local optimum. In addition, in this paper, the crowding factor in the fish school algorithm is used to define the degree or restraint of teachers’ control over students. At the same time, students in the crowded range gather near the teacher, and some students who are difficult to restrain perform the following behavior to follow the top students. Finally, this study builds a model based on actual needs, and designs a control experiment to verify the system performance. The results show that the system constructed in this paper has good performance and can provide a theoretical reference for related research.


2020 ◽  
Vol 64 (2) ◽  
pp. 20506-1-20506-7
Author(s):  
Min Zhu ◽  
Rongfu Zhang ◽  
Pei Ma ◽  
Xuedian Zhang ◽  
Qi Guo

Abstract Three-dimensional (3D) reconstruction is extensively used in microscopic applications. Reducing excessive error points and achieving accurate matching of weak texture regions have been the classical challenges for 3D microscopic vision. A Multi-ST algorithm was proposed to improve matching accuracy. The process is performed in two main stages: scaled microscopic images and regularized cost aggregation. First, microscopic image pairs with different scales were extracted according to the Gaussian pyramid criterion. Second, a novel cost aggregation approach based on the regularized multi-scale model was implemented into all scales to obtain the final cost. To evaluate the performances of the proposed Multi-ST algorithm and compare different algorithms, seven groups of images from the Middlebury dataset and four groups of experimental images obtained by a binocular microscopic system were analyzed. Disparity maps and reconstruction maps generated by the proposed approach contained more information and fewer outliers or artifacts. Furthermore, 3D reconstruction of the plug gauges using the Multi-ST algorithm showed that the error was less than 0.025 mm.


2020 ◽  
Vol 2 ◽  
pp. 58-61 ◽  
Author(s):  
Syed Junaid ◽  
Asad Saeed ◽  
Zeili Yang ◽  
Thomas Micic ◽  
Rajesh Botchu

The advances in deep learning algorithms, exponential computing power, and availability of digital patient data like never before have led to the wave of interest and investment in artificial intelligence in health care. No radiology conference is complete without a substantial dedication to AI. Many radiology departments are keen to get involved but are unsure of where and how to begin. This short article provides a simple road map to aid departments to get involved with the technology, demystify key concepts, and pique an interest in the field. We have broken down the journey into seven steps; problem, team, data, kit, neural network, validation, and governance.


Sign in / Sign up

Export Citation Format

Share Document