scholarly journals Parental Correlates of Offspring Sex Ratio in Eurasian Oystercatchers

The Auk ◽  
2000 ◽  
Vol 117 (4) ◽  
pp. 980-986 ◽  
Author(s):  
D. Heg ◽  
N. J. Dingemanse ◽  
C. M. Lessells ◽  
A. C. Mateman

Abstract We investigated hatchling and fledgling sex ratios in Eurasian Oystercatchers (Haematopus ostralegus) using random amplified polymorphic DNA markers. The overall hatchling (53% males, n = 374 hatchlings from 177 broods) and fledgling (49% males, n = 51) sex ratio did not differ significantly from unity. Hatchling and fledgling sex ratios were not correlated with laying date, clutch size, brood size, egg-laying sequence, territory quality, male age, or male breeding experience, but hatchling sex ratio was positively correlated with age and breeding experience of females (0.05 < P < 0.075, n = 71). Older females produced more sons irrespective of the position of the offspring in the egg-laying sequence. Fledging mass was not correlated with female age, so the Trivers and Willard (1973) hypothesis is unlikely to explain our results. Sons dispersed less than daughters, so the local resource competition hypothesis of Clark (1978) might apply. The adaptive significance of a male-biased sex ratio in clutches produced by older females is speculative because the costs and benefits of dispersing versus philopatric offspring to parents and offspring are largely unknown.

2003 ◽  
Vol 81 (8) ◽  
pp. 1306-1311 ◽  
Author(s):  
Monica L Bond ◽  
Jerry O Wolff ◽  
Sven Krackow

We tested predictions associated with three widely used hypotheses for facultative sex-ratio adjustment of vertebrates using eight enclosed populations of gray-tailed voles, Microtus canicaudus. These were (i) the population sex ratio hypothesis, which predicts that recruitment sex ratios should oppose adult sex-ratio skews, (ii) the local resource competition hypothesis, which predicts female-biased recruitment at low adult population density and male-biased recruitment at high population density, and (iii) the first cohort advantage hypothesis, which predicts that recruitment sex ratios should be female biased in the spring and male biased in the autumn. We monitored naturally increasing population densities with approximately equal adult sex ratios through the spring and summer and manipulated adult sex ratios in the autumn and measured subsequent sex ratios of recruits. We did not observe any significant sex-ratio adjustment in response to adult sex ratio or high population density; we did detect an influence of time within the breeding season, with more female offspring observed in the spring and more male offspring observed in the autumn. Significant seasonal increases in recruitment sex ratios indicate the capacity of female gray-tailed voles to manipulate their offspring sex ratios and suggest seasonal variation in the relative reproductive value of male and female offspring to be a regular phenomenon.


2006 ◽  
Vol 2 (4) ◽  
pp. 569-572 ◽  
Author(s):  
Tobias Uller ◽  
Beth Mott ◽  
Gaetano Odierna ◽  
Mats Olsson

Sex ratio evolution relies on genetic variation in either the phenotypic traits that influence sex ratios or sex-determining mechanisms. However, consistent variation among females in offspring sex ratio is rarely investigated. Here, we show that female painted dragons ( Ctenophorus pictus ) have highly repeatable sex ratios among clutches within years. A consistent effect of female identity could represent stable phenotypic differences among females or genetic variation in sex-determining mechanisms. Sex ratios were not correlated with female size, body condition or coloration. Furthermore, sex ratios were not influenced by incubation temperature. However, the variation among females resulted in female-biased mean population sex ratios at hatching both within and among years.


2010 ◽  
Vol 278 (1708) ◽  
pp. 1054-1063 ◽  
Author(s):  
Emilie Macke ◽  
Sara Magalhães ◽  
Hong Do-Thi Khan ◽  
Anthony Luciano ◽  
Adrien Frantz ◽  
...  

Haplodiploid species display extraordinary sex ratios. However, a differential investment in male and female offspring might also be achieved by a differential provisioning of eggs, as observed in birds and lizards. We investigated this hypothesis in the haplodiploid spider mite Tetranychus urticae , which displays highly female-biased sex ratios. We show that egg size significantly determines not only larval size, juvenile survival and adult size, but also fertilization probability, as in marine invertebrates with external fertilization, so that female (fertilized) eggs are significantly larger than male (unfertilized) eggs. Moreover, females with on average larger eggs before fertilization produce a more female-biased sex ratio afterwards. Egg size thus mediates sex-specific egg provisioning, sex and offspring sex ratio. Finally, sex-specific egg provisioning has another major consequence: male eggs produced by mated mothers are smaller than male eggs produced by virgins, and this size difference persists in adults. Virgin females might thus have a (male) fitness advantage over mated females.


1998 ◽  
Vol 88 (1) ◽  
pp. 37-45 ◽  
Author(s):  
K.M. Heinz

AbstractAn often encountered problem associated with augmentative and inundative biological control programmes is the high cost of producing sufficient numbers of natural enemies necessary to suppress pest populations within the time constraints imposed by ephemeral agroecosystems. In many arrhenotokous parasitoids, overproduction of males in mass-rearing cultures inflates costs (per female) and thus limits the economic feasibility of these biological control programmes. Within the context of existing production technologies, experiments were conducted to determine if the sex ratio ofCatolaccus grandis(Burks), an ectoparasitoid of the boll weevilAnthonomous grandisBoheman, varied as a function of boll weevil larval size. Results from natural and manipulative experiments demonstrate the following behavioural characteristics associated with C.grandissex allocation behaviour: (i) femaleC. grandisoffspring are produced on large size hosts and male offspring are produced on small hosts; (ii) whether a host is considered large or small depends upon the overall distribution of host sizes encountered by a female parasitoid; and (iii) female parasitoids exhibit a greater rate of increase in body size with host size than do male parasitoids. The observed patterns cannot be explained by sex-specific mortality of immature parasitoids developing on the different host size categories. In subsequent experiments, laboratory cultures ofC. grandisexposed daily to successively larger sizes ofA. grandislarvae produced successively greater female biased offspring sex ratios, cultures exposed daily to successively smaller sizes of host larvae produced successively greater male biased offspring sex ratios, and cultures exposed daily to equivalent host size distributions over time maintained a uniform offspring sex ratio. By increasing the average size ofA. grandislarval hosts exposed toC. grandisby 2.5 mg per day in mass rearing cultures, the percentage of male progeny can be reduced from 33% to 23% over a period of four consecutive exposure days.


2013 ◽  
Vol 280 (1772) ◽  
pp. 20132460 ◽  
Author(s):  
Timothy S. Mitchell ◽  
Jessica A. Maciel ◽  
Fredric J. Janzen

Evolutionary theory predicts that dioecious species should produce a balanced primary sex ratio maintained by frequency-dependent selection. Organisms with environmental sex determination, however, are vulnerable to maladaptive sex ratios, because environmental conditions vary spatio-temporally. For reptiles with temperature-dependent sex determination, nest-site choice is a behavioural maternal effect that could respond to sex-ratio selection, as mothers could adjust offspring sex ratios by choosing nest sites that will have particular thermal properties. This theoretical prediction has generated decades of empirical research, yet convincing evidence that sex-ratio selection is influencing nesting behaviours remains absent. Here, we provide the first experimental evidence from nature that sex-ratio selection, rather than only viability selection, is probably an important component of nest-site choice in a reptile with temperature-dependent sex determination. We compare painted turtle ( Chrysemys picta ) neonates from maternally selected nest sites with those from randomly selected nest sites, observing no substantive difference in hatching success or survival, but finding a profound difference in offspring sex ratio in the direction expected based on historical records. Additionally, we leverage long-term data to reconstruct our sex ratio results had the experiment been repeated in multiple years. As predicted by theory, our results suggest that sex-ratio selection has shaped nesting behaviour in ways likely to enhance maternal fitness.


2017 ◽  
Author(s):  
Imroze Khan ◽  
Arun Prakash ◽  
Swastika Issar ◽  
Mihir Umarani ◽  
Rohit Sasidharan ◽  
...  

SUMMARYIn animals, skewed sex ratios can affect individual fitness either via sexual interactions (e.g. intersexual conflict or intrasexual mate competition) or non-sexual interactions (e.g. sex-specific resource competition). Because most analyses of sex ratio focus on sexual interactions, the relative importance of these mechanisms remains unclear. We addressed this problem using the flour beetle Tribolium castaneum, where male-biased sex ratios increase female fitness relative to unbiased or female-biased groups. Although flour beetles show both sexual and non-sexual (resource) competition, we found that sexual interactions did not explain female fitness. Instead, female fecundity was dramatically reduced even after a brief exposure to flour conditioned by other females. Earlier studies suggested that quinones (secreted toxins) might mediate density-dependent population growth in flour beetles. We identified ethyl- and methyl-benzoquinone (EBQ and MBQ) as the primary components of adult stink glands that regulate female fecundity. In female-biased groups (i.e. at high female density), females upregulated quinones and suppressed each other’s reproduction. In male-biased groups, low female density lead to low quinone levels, allowing higher fecundity. Thus, quinones serve both as indicators and mediators of female competition, resulting in the observed fitness decline in female-biased groups. Our results underscore the importance of non-sexual interference competition that may often underlie the fitness consequences of skewed sex ratios.


The Auk ◽  
2001 ◽  
Vol 118 (3) ◽  
pp. 624-635 ◽  
Author(s):  
Ulf Wiktander ◽  
Ola Olsson ◽  
Sven G. Nilsson

Abstract We examined the influence of female age, male age, and pair-bond duration on start of egg-laying, clutch size, and number of young fledged in the Lesser Spotted Woodpecker (Dendrocopos minor). We also attempted to disentangle the relative influence of individual age and pair-bond duration on reproduction, because the effect of those factors may be confounded. Breeding performance improved with age in that old females started egg-laying earlier and old males raised more young than yearlings, and old pairs both started egg-laying earlier and raised more young than new pairs. Clutch size was not affected by age, but showed a strong negative relation with laying date. Late-laying yearling females experienced a lower survival, and the survival of yearling males showed a positive relation with fledgling production. That differential survival was a likely mechanism explaining the differences in reproductive performance between yearling and old birds. Several analyses suggested that pair-bond duration had independent positive effects on reproduction. Benefit of long-term pair-bonds appeared to depend upon repeated breeding with a particular partner. The mechanisms behind the benefit of remating with a particular partner remain unclear, however. We postulate that much of the patterns of age effects on reproduction in the Lesser Spotted Woodpecker may be caused by constraints posed by the territorial system and effects of territory quality, although effects of individual quality can not be excluded.


2019 ◽  
Vol 286 (1902) ◽  
pp. 20190345 ◽  
Author(s):  
Aurelio F. Malo ◽  
Tania C. Gilbert ◽  
Philip Riordan

Parent sex ratio allocation has consequences for individual fitness, population dynamics, and conservation. Theory predicts that parents should adjust offspring sex ratio when the fitness returns of producing male or female offspring varies. Previous studies have assumed that only mothers are capable of biasing offspring sex ratios, but have neglected fathers, given the expectation of an equal proportion of X- and Y-chromosome-bearing (CBS) sperm in ejaculates due to sex chromosome segregation at meiosis. This assumption has been recently refuted and both paternal fertility and paternal genetic quality have been shown to bias sex ratios. Here, we simultaneously test the relative contribution of paternal, maternal, and individual genetic quality, as measured by inbreeding, on the probability of being born a son or a daughter, using pedigree and lifelong offspring sex ratio data for the eastern bongo ( Tragelaphus eurycerus isaaci ). Our models showed first, that surprisingly, as individual inbreeding decreases the probability of being born male increases, second, that paternal genetic effects on sex ratio were stronger than maternal genetic effects (which were absent). Furthermore, paternal effects were opposite in sign to those predicted; father inbreeding increases the probability of having sons. Previous paternal effects have been interpreted as adaptive due to sex-specific inbreeding depression for reproductive traits. We argue that in the eastern bongo, the opposite sign of the paternal effect on sex ratios results from a reversed sex-specific inbreeding depression pattern (present for female but not male reproductive traits). We anticipate that this research will help stimulate research on evolutionary constraints to sex ratios. Finally, the results open a new avenue of research to predict sex ratio allocation in an applied conservation context. Future models of sex ratio allocation should also include the predicted inbreeding level of the offspring and paternal inbreeding levels.


Author(s):  
Katherine A. Valentine ◽  
Norman P. Li ◽  
Jose C. Yong

Mothers play an important role in helping their children achieve maximal reproductive success. We explore how mothers across species manipulate birth sex ratios favoring the sex that will be best suited to their environments and how maternal competition affects offspring reproductive success in nonhuman mammals as well as humans. The Trivers-Willard hypothesis, resource competition hypothesis, resource enhancement hypothesis, and maternal dominance hypothesis are considered with respect to maternal birth sex ratio manipulation. Next, the primate literature is reviewed as inspiration for hypotheses on maternal competition for positive offspring outcomes. Nonhuman primates as well as humans are argued to compete for status, breeding opportunities, and allomothers (i.e., caregivers apart from the mother), and these factors have an impact on their reproductive success. Status is passed on from mother to offspring, amplifying the effects of competition for status. Future directions are delineated to fill in gaps in the existing literature.


2016 ◽  
Vol 9 (3) ◽  
pp. 131-138 ◽  
Author(s):  
A.E. Gam ◽  
K.J. Navara

Previous research suggests that environmental and social factors can drive female birds to bias offspring sex ratios. The underlying mechanisms controlling these adjustments remain unclear. Results from experimental and correlative research suggest that maternal corticosterone plays an important role in this process. Since females are the heterogametic sex in birds, corticosterone may potentially bias offspring sex ratios during meiotic segregation, through non-random segregation of sex chromosomes. In a previous study, we showed that pharmacological elevations of corticosterone near the time of meiotic segregation exerted an effect on offspring sex ratio, causing female Zebra Finches ( Taeniopygia guttata) to produce significantly more males. Here, we aimed to determine whether endogenous elevations in the physiological range have similar effects on offspring sex. First we examined offspring sex ratio in relation to baseline corticosterone levels to determine if natural variation in circulating corticosterone near the time of meiotic segregation is related to offspring sex ratio. Next, we used a 5-minute bag handling protocol to induce corticosterone elevations 5 hours prior to ovulation. Maternal baseline corticosterone levels did not correlate with average clutch sex ratios. In addition, the sex ratios produced by females exposed to handling stress did not differ from sex ratios produced by unmanipulated females. Together these results suggest that physiological levels of endogenous corticosterone, both baseline and acutely elevated near the time of sex determination may not be involved in the adjustment of primary sex ratios in Zebra Finches.


Sign in / Sign up

Export Citation Format

Share Document