Structured sparsity regularization for analyzing high-dimensional omics data

Author(s):  
Susana Vinga

Abstract The development of new molecular and cell technologies is having a significant impact on the quantity of data generated nowadays. The growth of omics databases is creating a considerable potential for knowledge discovery and, concomitantly, is bringing new challenges to statistical learning and computational biology for health applications. Indeed, the high dimensionality of these data may hamper the use of traditional regression methods and parameter estimation algorithms due to the intrinsic non-identifiability of the inherent optimization problem. Regularized optimization has been rising as a promising and useful strategy to solve these ill-posed problems by imposing additional constraints in the solution parameter space. In particular, the field of statistical learning with sparsity has been significantly contributing to building accurate models that also bring interpretability to biological observations and phenomena. Beyond the now-classic elastic net, one of the best-known methods that combine lasso with ridge penalizations, we briefly overview recent literature on structured regularizers and penalty functions that have been applied in biomedical data to build parsimonious models in a variety of underlying contexts, from survival to generalized linear models. These methods include functions of $\ell _k$-norms and network-based penalties that take into account the inherent relationships between the features. The successful application to omics data illustrates the potential of sparse structured regularization for identifying disease’s molecular signatures and for creating high-performance clinical decision support systems towards more personalized healthcare. Supplementary information: Supplementary data are available at Briefings in Bioinformatics online.

2020 ◽  
Vol 36 (20) ◽  
pp. 5045-5053
Author(s):  
Moritz Hess ◽  
Maren Hackenberg ◽  
Harald Binder

Abstract Motivation Following many successful applications to image data, deep learning is now also increasingly considered for omics data. In particular, generative deep learning not only provides competitive prediction performance, but also allows for uncovering structure by generating synthetic samples. However, exploration and visualization is not as straightforward as with image applications. Results We demonstrate how log-linear models, fitted to the generated, synthetic data can be used to extract patterns from omics data, learned by deep generative techniques. Specifically, interactions between latent representations learned by the approaches and generated synthetic data are used to determine sets of joint patterns. Distances of patterns with respect to the distribution of latent representations are then visualized in low-dimensional coordinate systems, e.g. for monitoring training progress. This is illustrated with simulated data and subsequently with cortical single-cell gene expression data. Using different kinds of deep generative techniques, specifically variational autoencoders and deep Boltzmann machines, the proposed approach highlights how the techniques uncover underlying structure. It facilitates the real-world use of such generative deep learning techniques to gain biological insights from omics data. Availability and implementation The code for the approach as well as an accompanying Jupyter notebook, which illustrates the application of our approach, is available via the GitHub repository: https://github.com/ssehztirom/Exploring-generative-deep-learning-for-omics-data-by-using-log-linear-models. Supplementary information Supplementary data are available at Bioinformatics online.


1993 ◽  
Vol 32 (01) ◽  
pp. 12-13 ◽  
Author(s):  
M. A. Musen

Abstract:Response to Heathfield HA, Wyatt J. Philosophies for the design and development of clinical decision-support systems. Meth Inform Med 1993; 32: 1-8.


2006 ◽  
Vol 45 (05) ◽  
pp. 523-527 ◽  
Author(s):  
A. Abu-Hanna ◽  
B. Nannings

Summary Objectives: Decision Support Telemedicine Systems (DSTS) are at the intersection of two disciplines: telemedicine and clinical decision support systems (CDSS). The objective of this paper is to provide a set of characterizing properties for DSTSs. This characterizing property set (CPS) can be used for typing, classifying and clustering DSTSs. Methods: We performed a systematic keyword-based literature search to identify candidate-characterizing properties. We selected a subset of candidates and refined them by assessing their potential in order to obtain the CPS. Results: The CPS consists of 14 properties, which can be used for the uniform description and typing of applications of DSTSs. The properties are grouped in three categories that we refer to as the problem dimension, process dimension, and system dimension. We provide CPS instantiations for three prototypical applications. Conclusions: The CPS includes important properties for typing DSTSs, focusing on aspects of communication for the telemedicine part and on aspects of decisionmaking for the CDSS part. The CPS provides users with tools for uniformly describing DSTSs.


2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
S M Jansen-Kosterink ◽  
M Cabrita ◽  
I Flierman

Abstract Background Clinical Decision Support Systems (CDSSs) are computerized systems using case-based reasoning to assist clinicians in making clinical decisions. Despite the proven added value to public health, the implementation of CDSS clinical practice is scarce. Particularly, little is known about the acceptance of CDSS among clinicians. Within the Back-UP project (Project Number: H2020-SC1-2017-CNECT-2-777090) a CDSS is developed with prognostic models to improve the management of Neck and/or Low Back Pain (NLBP). Therefore, the aim of this study is to present the factors involved in the acceptance of CDSSs among clinicians. Methods To assess the acceptance of CDSSs among clinicians we conducted a mixed method analysis of questionnaires and focus groups. An online questionnaire with a low-fidelity prototype of a CDSS (TRL3) was sent to Dutch clinicians aimed to identify the factors influencing the acceptance of CDSSs (intention to use, perceived threat to professional autonomy, trusting believes and perceived usefulness). Next to this, two focus groups were conducted with clinicians addressing the general attitudes towards CDSSs, the factors determining the level of acceptance, and the conditions to facilitate use of CDSSs. Results A pilot-study of the online questionnaire is completed and the results of the large evaluation are expected spring 2020. Eight clinicians participated in two focus groups. After being introduced to various types of CDSSs, participants were positive about the value of CDSS in the care of NLBP. The clinicians agreed that the human touch in NLBP care must be preserved and that CDSSs must remain a supporting tool, and not a replacement of their role as professionals. Conclusions By identifying the factors hindering the acceptance of CDSSs we can draw implications for implementation of CDSSs in the treatment of NLBP.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Stephanie Jansen-Kosterink ◽  
Lex van Velsen ◽  
Miriam Cabrita

Abstract Background The uptake of complex clinical decision support systems (CDSS) in daily practice remains low, despite the proven potential to reduce medical errors and to improve the quality of care. To improve successful implementation of a complex CDSS this study aims to identify the factors that hinder, or alleviate the acceptance of, clinicians toward the use of a complex CDSS for treatment allocation of patients with chronic low back pain. Methods We tested a research model in which the intention to use a CDSS by clinicians is influenced by the perceived usefulness; this usefulness, in turn is influenced by the perceived service benefits and perceived service risks. An online survey was created to test our research model and the data was analysed using Partial Least Squares Structural Equation Modelling. The study population consisted of clinicians. The online questionnaire started with demographic questions and continued with a video animation of the complex CDSS followed by the set of measurement items. The online questionnaire ended with two open questions enquiring the reasons to use and not use, a complex CDSS. Results Ninety-eight participants (46% general practitioners, 25% primary care physical therapists, and 29% clinicians at a rehabilitation centre) fully completed the questionnaire. Fifty-two percent of the respondents were male. The average age was 48 years (SD ± 12.2). The causal model suggests that perceived usefulness is the main factor contributing to the intention to use a complex CDSS. Perceived service benefits and risks are both significant antecedents of perceived usefulness and perceived service risks are affected by the perceived threat to autonomy and trusting beliefs, particularly benevolence and competence. Conclusions To improve the acceptance of complex CDSSs it is important to address the risks, but the main focus during the implementation phase should be on the expected improvements in patient outcomes and the overall gain for clinicians. Our results will help the development of complex CDSSs that fit more into the daily clinical practice of clinicians.


2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
D Vallone ◽  
A Tamburrano ◽  
C Carrozza ◽  
A Urbani ◽  
A Cambieri ◽  
...  

Abstract Computerized Clinical Decision Support Systems (CCDSS) are information technology-based systems that use specific patient characteristics and combine them with rule-based algorithms. The aim of this study is to conduct a survey to measure and assess the over-utilization rates of laboratory requests and to estimate the monthly cost of inappropriate requests in inpatients of the “Fondazione Policlinico Universitario A. Gemelli IRCCS” Care Units. This observational study is based on the count of rules violations for 43 different types of laboratory tests requested by the Hospital physicians, for a total of 5,716,370 requests, over a continuous period of 20 months (from 1 July 2016 to 28 February 2018). Requests from all the hospital internal departments (except for Emergency, Intensive Care Units and Urgent requests) were monitored. The software intercepted and counted, in silent mode for the operator, all requests and violations for each laboratory test among those identified. During the observation period a mean of 285,819 requests per month were analyzed and 40,462 violations were counted. The global rate of overuse was 15.2% ± 3.0%. The overall difference among sub-groups was significant (p < 0.001). The most inappropriate exams were Alpha Fetoprotein (85.8% ± 30.5%), Chlamydia trachomatis PCR (48.7% ± 8.8%) and Alkaline Phosphatase (20.3% ± 6.5%). All the exams, globally considered, generated an estimated avoidable cost of 1,719,337€ (85,967€ per month) for the hospital. This study reports rates (15.2%) similar to other works. The real impact of inappropriateness is difficult to assess, but the generated costs for patients, hospitals and health systems are certainly high and not negligible. Key messages It would be desirable for international medical communities to produce a complete panel of prescriptive rules for all the most common laboratory exam. That is useful not only to reduce costs, but also to ensure standardization and high-quality care.


2021 ◽  
Vol 11 (6) ◽  
pp. 2880
Author(s):  
Miguel Pereira ◽  
Patricia Concheiro-Moscoso ◽  
Alexo López-Álvarez ◽  
Gerardo Baños ◽  
Alejandro Pazos ◽  
...  

The advances achieved in recent decades regarding cardiac surgery have led to a new risk that goes beyond surgeons' dexterity; postoperative hours are crucial for cardiac surgery patients and are usually spent in intensive care units (ICUs), where the patients need to be continuously monitored to adjust their treatment. Clinical decision support systems (CDSSs) have been developed to take this real-time information and provide clinical suggestions to physicians in order to reduce medical errors and to improve patient recovery. In this review, an initial total of 499 papers were considered after identification using PubMed, Web of Science, and CINAHL. Twenty-two studies were included after filtering, which included the deletion of duplications and the exclusion of titles or abstracts that were not of real interest. A review of these papers concluded the applicability and advances that CDSSs offer for both doctors and patients. Better prognosis and recovery rates are achieved by using this technology, which has also received high acceptance among most physicians. However, despite the evidence that well-designed CDSSs are effective, they still need to be refined to offer the best assistance possible, which may still take time, despite the promising models that have already been applied in real ICUs.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Elizabeth Ford ◽  
Natalie Edelman ◽  
Laura Somers ◽  
Duncan Shrewsbury ◽  
Marcela Lopez Levy ◽  
...  

Abstract Background Well-established electronic data capture in UK general practice means that algorithms, developed on patient data, can be used for automated clinical decision support systems (CDSSs). These can predict patient risk, help with prescribing safety, improve diagnosis and prompt clinicians to record extra data. However, there is persistent evidence of low uptake of CDSSs in the clinic. We interviewed UK General Practitioners (GPs) to understand what features of CDSSs, and the contexts of their use, facilitate or present barriers to their use. Methods We interviewed 11 practicing GPs in London and South England using a semi-structured interview schedule and discussed a hypothetical CDSS that could detect early signs of dementia. We applied thematic analysis to the anonymised interview transcripts. Results We identified three overarching themes: trust in individual CDSSs; usability of individual CDSSs; and usability of CDSSs in the broader practice context, to which nine subthemes contributed. Trust was affected by CDSS provenance, perceived threat to autonomy and clear management guidance. Usability was influenced by sensitivity to the patient context, CDSS flexibility, ease of control, and non-intrusiveness. CDSSs were more likely to be used by GPs if they did not contribute to alert proliferation and subsequent fatigue, or if GPs were provided with training in their use. Conclusions Building on these findings we make a number of recommendations for CDSS developers to consider when bringing a new CDSS into GP patient records systems. These include co-producing CDSS with GPs to improve fit within clinic workflow and wider practice systems, ensuring a high level of accuracy and a clear clinical pathway, and providing CDSS training for practice staff. These recommendations may reduce the proliferation of unhelpful alerts that can result in important decision-support being ignored.


2021 ◽  
pp. 0310057X2097403
Author(s):  
Brenton J Sanderson ◽  
Jeremy D Field ◽  
Lise J Estcourt ◽  
Erica M Wood ◽  
Enrico W Coiera

Massive transfusions guided by massive transfusion protocols are commonly used to manage critical bleeding, when the patient is at significant risk of morbidity and mortality, and multiple timely decisions must be made by clinicians. Clinical decision support systems are increasingly used to provide patient-specific recommendations by comparing patient information to a knowledge base, and have been shown to improve patient outcomes. To investigate current massive transfusion practice and the experiences and attitudes of anaesthetists towards massive transfusion and clinical decision support systems, we anonymously surveyed 1000 anaesthetists and anaesthesia trainees across Australia and New Zealand. A total of 228 surveys (23.6%) were successfully completed and 227 were analysed for a 23.3% response rate. Most respondents were involved in massive transfusions infrequently (88.1% managed five or fewer massive transfusion protocols per year) and worked at hospitals which have massive transfusion protocols (89.4%). Massive transfusion management was predominantly limited by timely access to point-of-care coagulation assessment and by competition with other tasks, with trainees reporting more significant limitations compared to specialists. The majority of respondents reported that they were likely, or very likely, both to use (73.1%) and to trust (85%) a clinical decision support system for massive transfusions, with no significant difference between anaesthesia trainees and specialists ( P = 0.375 and P = 0.73, respectively). While the response rate to our survey was poor, there was still a wide range of massive transfusion experience among respondents, with multiple subjective factors identified limiting massive transfusion practice. We identified several potential design features and barriers to implementation to assist with the future development of a clinical decision support system for massive transfusion, and overall wide support for a clinical decision support system for massive transfusion among respondents.


Sign in / Sign up

Export Citation Format

Share Document