Goals and approaches for each processing step for single-cell RNA sequencing data

Author(s):  
Zilong Zhang ◽  
Feifei Cui ◽  
Chunyu Wang ◽  
Lingling Zhao ◽  
Quan Zou

Abstract Single-cell RNA sequencing (scRNA-seq) has enabled researchers to study gene expression at the cellular level. However, due to the extremely low levels of transcripts in a single cell and technical losses during reverse transcription, gene expression at a single-cell resolution is usually noisy and highly dimensional; thus, statistical analyses of single-cell data are a challenge. Although many scRNA-seq data analysis tools are currently available, a gold standard pipeline is not available for all datasets. Therefore, a general understanding of bioinformatics and associated computational issues would facilitate the selection of appropriate tools for a given set of data. In this review, we provide an overview of the goals and most popular computational analysis tools for the quality control, normalization, imputation, feature selection and dimension reduction of scRNA-seq data.

2020 ◽  
Author(s):  
Weimiao Wu ◽  
Qile Dai ◽  
Yunqing Liu ◽  
Xiting Yan ◽  
Zuoheng Wang

AbstractSingle-cell RNA sequencing provides an opportunity to study gene expression at single-cell resolution. However, prevalent dropout events result in high data sparsity and noise that may obscure downstream analyses. We propose a novel method, G2S3, that imputes dropouts by borrowing information from adjacent genes in a sparse gene graph learned from gene expression profiles across cells. We applied G2S3 and other existing methods to seven single-cell datasets to compare their performance. Our results demonstrated that G2S3 is superior in recovering true expression levels, identifying cell subtypes, improving differential expression analyses, and recovering gene regulatory relationships, especially for mildly expressed genes.


2021 ◽  
Vol 17 (5) ◽  
pp. e1009029
Author(s):  
Weimiao Wu ◽  
Yunqing Liu ◽  
Qile Dai ◽  
Xiting Yan ◽  
Zuoheng Wang

Single-cell RNA sequencing technology provides an opportunity to study gene expression at single-cell resolution. However, prevalent dropout events result in high data sparsity and noise that may obscure downstream analyses in single-cell transcriptomic studies. We propose a new method, G2S3, that imputes dropouts by borrowing information from adjacent genes in a sparse gene graph learned from gene expression profiles across cells. We applied G2S3 and ten existing imputation methods to eight single-cell transcriptomic datasets and compared their performance. Our results demonstrated that G2S3 has superior overall performance in recovering gene expression, identifying cell subtypes, reconstructing cell trajectories, identifying differentially expressed genes, and recovering gene regulatory and correlation relationships. Moreover, G2S3 is computationally efficient for imputation in large-scale single-cell transcriptomic datasets.


Circulation ◽  
2020 ◽  
Vol 142 (14) ◽  
pp. 1374-1388
Author(s):  
Yanming Li ◽  
Pingping Ren ◽  
Ashley Dawson ◽  
Hernan G. Vasquez ◽  
Waleed Ageedi ◽  
...  

Background: Ascending thoracic aortic aneurysm (ATAA) is caused by the progressive weakening and dilatation of the aortic wall and can lead to aortic dissection, rupture, and other life-threatening complications. To improve our understanding of ATAA pathogenesis, we aimed to comprehensively characterize the cellular composition of the ascending aortic wall and to identify molecular alterations in each cell population of human ATAA tissues. Methods: We performed single-cell RNA sequencing analysis of ascending aortic tissues from 11 study participants, including 8 patients with ATAA (4 women and 4 men) and 3 control subjects (2 women and 1 man). Cells extracted from aortic tissue were analyzed and categorized with single-cell RNA sequencing data to perform cluster identification. ATAA-related changes were then examined by comparing the proportions of each cell type and the gene expression profiles between ATAA and control tissues. We also examined which genes may be critical for ATAA by performing the integrative analysis of our single-cell RNA sequencing data with publicly available data from genome-wide association studies. Results: We identified 11 major cell types in human ascending aortic tissue; the high-resolution reclustering of these cells further divided them into 40 subtypes. Multiple subtypes were observed for smooth muscle cells, macrophages, and T lymphocytes, suggesting that these cells have multiple functional populations in the aortic wall. In general, ATAA tissues had fewer nonimmune cells and more immune cells, especially T lymphocytes, than control tissues did. Differential gene expression data suggested the presence of extensive mitochondrial dysfunction in ATAA tissues. In addition, integrative analysis of our single-cell RNA sequencing data with public genome-wide association study data and promoter capture Hi-C data suggested that the erythroblast transformation-specific related gene( ERG ) exerts an important role in maintaining normal aortic wall function. Conclusions: Our study provides a comprehensive evaluation of the cellular composition of the ascending aortic wall and reveals how the gene expression landscape is altered in human ATAA tissue. The information from this study makes important contributions to our understanding of ATAA formation and progression.


2018 ◽  
Author(s):  
Christopher S. McGinnis ◽  
Lyndsay M. Murrow ◽  
Zev J. Gartner

SUMMARYSingle-cell RNA sequencing (scRNA-seq) using droplet microfluidics occasionally produces transcriptome data representing more than one cell. These technical artifacts are caused by cell doublets formed during cell capture and occur at a frequency proportional to the total number of sequenced cells. The presence of doublets can lead to spurious biological conclusions, which justifies the practice of sequencing fewer cells to limit doublet formation rates. Here, we present a computational doublet detection tool – DoubletFinder – that identifies doublets based solely on gene expression features. DoubletFinder infers the putative gene expression profile of real doublets by generating artificial doublets from existing scRNA-seq data. Neighborhood detection in gene expression space then identifies sequenced cells with increased probability of being doublets based on their proximity to artificial doublets. DoubletFinder robustly identifies doublets across scRNA-seq datasets with variable numbers of cells and sequencing depth, and predicts false-negative and false-positive doublets defined using conventional barcoding approaches. We anticipate that DoubletFinder will aid in scRNA-seq data analysis and will increase the throughput and accuracy of scRNA-seq experiments.


2019 ◽  
Author(s):  
Alemu Takele Assefa ◽  
Jo Vandesompele ◽  
Olivier Thas

SummarySPsimSeq is a semi-parametric simulation method for bulk and single cell RNA sequencing data. It simulates data from a good estimate of the actual distribution of a given real RNA-seq dataset. In contrast to existing approaches that assume a particular data distribution, our method constructs an empirical distribution of gene expression data from a given source RNA-seq experiment to faithfully capture the data characteristics of real data. Importantly, our method can be used to simulate a wide range of scenarios, such as single or multiple biological groups, systematic variations (e.g. confounding batch effects), and different sample sizes. It can also be used to simulate different gene expression units resulting from different library preparation protocols, such as read counts or UMI counts.Availability and implementationThe R package and associated documentation is available from https://github.com/CenterForStatistics-UGent/SPsimSeq.Supplementary informationSupplementary data are available at bioRχiv online.


Sign in / Sign up

Export Citation Format

Share Document