scholarly journals GeneSwitches: ordering gene expression and functional events in single-cell experiments

2020 ◽  
Vol 36 (10) ◽  
pp. 3273-3275
Author(s):  
Elaine Y Cao ◽  
John F Ouyang ◽  
Owen J L Rackham

Abstract Summary Emerging single-cell RNA-sequencing data technologies has made it possible to capture and assess the gene expression of individual cells. Based on the similarity of gene expression profiles, many tools have been developed to generate an in silico ordering of cells in the form of pseudo-time trajectories. However, these tools do not provide a means to find the ordering of critical gene expression changes over pseudo-time. We present GeneSwitches, a tool that takes any single-cell pseudo-time trajectory and determines the precise order of gene expression and functional-event changes over time. GeneSwitches uses a statistical framework based on logistic regression to identify the order in which genes are either switched on or off along pseudo-time. With this information, users can identify the order in which surface markers appear, investigate how functional ontologies are gained or lost over time and compare the ordering of switching genes from two related pseudo-temporal processes. Availability GeneSwitches is available at https://geneswitches.ddnetbio.com. Supplementary information Supplementary data are available at Bioinformatics online.

2019 ◽  
Author(s):  
Elaine Y. Cao ◽  
John F. Ouyang ◽  
Owen J.L. Rackham

AbstractSummaryEmerging single-cell RNA-seq technologies has made it possible to capture and assess the gene expression of individual cells. Based on the similarity of gene expression profiles, many tools have been developed to generate an in silico ordering of cells in the form of pseudo-time trajectories. However, these tools do not provide a means to find the ordering of critical gene expression changes over pseudo-time. We present GeneSwitches, a tool that takes any single-cell pseudo-time trajectory and determines the precise order of gene-expression and functional-event changes over time. GeneSwitches uses a statistical framework based on logistic regression to identify the order in which genes are either switched on or off along pseudo-time. With this information, users can identify the order in which surface markers appear, investigate how functional ontologies are gained or lost over time, and compare the ordering of switching genes from two related pseudo-temporal processes.AvailabilityGeneSwitches is available at https://geneswitches.ddnetbio.comContactowen.rackham@duke-nus.edu.sgSupplementary Informationis available at http://www.ddnetbio.com/files/GeneSwitches_SI.pdf


2020 ◽  
Author(s):  
Weimiao Wu ◽  
Qile Dai ◽  
Yunqing Liu ◽  
Xiting Yan ◽  
Zuoheng Wang

AbstractSingle-cell RNA sequencing provides an opportunity to study gene expression at single-cell resolution. However, prevalent dropout events result in high data sparsity and noise that may obscure downstream analyses. We propose a novel method, G2S3, that imputes dropouts by borrowing information from adjacent genes in a sparse gene graph learned from gene expression profiles across cells. We applied G2S3 and other existing methods to seven single-cell datasets to compare their performance. Our results demonstrated that G2S3 is superior in recovering true expression levels, identifying cell subtypes, improving differential expression analyses, and recovering gene regulatory relationships, especially for mildly expressed genes.


2021 ◽  
Vol 17 (5) ◽  
pp. e1009029
Author(s):  
Weimiao Wu ◽  
Yunqing Liu ◽  
Qile Dai ◽  
Xiting Yan ◽  
Zuoheng Wang

Single-cell RNA sequencing technology provides an opportunity to study gene expression at single-cell resolution. However, prevalent dropout events result in high data sparsity and noise that may obscure downstream analyses in single-cell transcriptomic studies. We propose a new method, G2S3, that imputes dropouts by borrowing information from adjacent genes in a sparse gene graph learned from gene expression profiles across cells. We applied G2S3 and ten existing imputation methods to eight single-cell transcriptomic datasets and compared their performance. Our results demonstrated that G2S3 has superior overall performance in recovering gene expression, identifying cell subtypes, reconstructing cell trajectories, identifying differentially expressed genes, and recovering gene regulatory and correlation relationships. Moreover, G2S3 is computationally efficient for imputation in large-scale single-cell transcriptomic datasets.


2019 ◽  
Vol 35 (22) ◽  
pp. 4688-4695 ◽  
Author(s):  
Rui Hou ◽  
Elena Denisenko ◽  
Alistair R R Forrest

Abstract Motivation Single-cell RNA sequencing (scRNA-seq) measures gene expression at the resolution of individual cells. Massively multiplexed single-cell profiling has enabled large-scale transcriptional analyses of thousands of cells in complex tissues. In most cases, the true identity of individual cells is unknown and needs to be inferred from the transcriptomic data. Existing methods typically cluster (group) cells based on similarities of their gene expression profiles and assign the same identity to all cells within each cluster using the averaged expression levels. However, scRNA-seq experiments typically produce low-coverage sequencing data for each cell, which hinders the clustering process. Results We introduce scMatch, which directly annotates single cells by identifying their closest match in large reference datasets. We used this strategy to annotate various single-cell datasets and evaluated the impacts of sequencing depth, similarity metric and reference datasets. We found that scMatch can rapidly and robustly annotate single cells with comparable accuracy to another recent cell annotation tool (SingleR), but that it is quicker and can handle larger reference datasets. We demonstrate how scMatch can handle large customized reference gene expression profiles that combine data from multiple sources, thus empowering researchers to identify cell populations in any complex tissue with the desired precision. Availability and implementation scMatch (Python code) and the FANTOM5 reference dataset are freely available to the research community here https://github.com/forrest-lab/scMatch. Supplementary information Supplementary data are available at Bioinformatics online.


Science ◽  
2020 ◽  
Vol 371 (6531) ◽  
pp. eaba5257 ◽  
Author(s):  
Anna Kuchina ◽  
Leandra M. Brettner ◽  
Luana Paleologu ◽  
Charles M. Roco ◽  
Alexander B. Rosenberg ◽  
...  

Single-cell RNA sequencing (scRNA-seq) has become an essential tool for characterizing gene expression in eukaryotes, but current methods are incompatible with bacteria. Here, we introduce microSPLiT (microbial split-pool ligation transcriptomics), a high-throughput scRNA-seq method for Gram-negative and Gram-positive bacteria that can resolve heterogeneous transcriptional states. We applied microSPLiT to >25,000 Bacillus subtilis cells sampled at different growth stages, creating an atlas of changes in metabolism and lifestyle. We retrieved detailed gene expression profiles associated with known, but rare, states such as competence and prophage induction and also identified unexpected gene expression states, including the heterogeneous activation of a niche metabolic pathway in a subpopulation of cells. MicroSPLiT paves the way to high-throughput analysis of gene expression in bacterial communities that are otherwise not amenable to single-cell analysis, such as natural microbiota.


GigaScience ◽  
2020 ◽  
Vol 9 (10) ◽  
Author(s):  
Francesca Pia Caruso ◽  
Luciano Garofano ◽  
Fulvio D'Angelo ◽  
Kai Yu ◽  
Fuchou Tang ◽  
...  

ABSTRACT Background Single-cell RNA sequencing is the reference technique for characterizing the heterogeneity of the tumor microenvironment. The composition of the various cell types making up the microenvironment can significantly affect the way in which the immune system activates cancer rejection mechanisms. Understanding the cross-talk signals between immune cells and cancer cells is of fundamental importance for the identification of immuno-oncology therapeutic targets. Results We present a novel method, single-cell Tumor–Host Interaction tool (scTHI), to identify significantly activated ligand–receptor interactions across clusters of cells from single-cell RNA sequencing data. We apply our approach to uncover the ligand–receptor interactions in glioma using 6 publicly available human glioma datasets encompassing 57,060 gene expression profiles from 71 patients. By leveraging this large-scale collection we show that unexpected cross-talk partners are highly conserved across different datasets in the majority of the tumor samples. This suggests that shared cross-talk mechanisms exist in glioma. Conclusions Our results provide a complete map of the active tumor–host interaction pairs in glioma that can be therapeutically exploited to reduce the immunosuppressive action of the microenvironment in brain tumor.


Author(s):  
Bong-Hyun Kim ◽  
Kijin Yu ◽  
Peter C W Lee

Abstract Motivation Cancer classification based on gene expression profiles has provided insight on the causes of cancer and cancer treatment. Recently, machine learning-based approaches have been attempted in downstream cancer analysis to address the large differences in gene expression values, as determined by single-cell RNA sequencing (scRNA-seq). Results We designed cancer classifiers that can identify 21 types of cancers and normal tissues based on bulk RNA-seq as well as scRNA-seq data. Training was performed with 7398 cancer samples and 640 normal samples from 21 tumors and normal tissues in TCGA based on the 300 most significant genes expressed in each cancer. Then, we compared neural network (NN), support vector machine (SVM), k-nearest neighbors (kNN) and random forest (RF) methods. The NN performed consistently better than other methods. We further applied our approach to scRNA-seq transformed by kNN smoothing and found that our model successfully classified cancer types and normal samples. Availability and implementation Cancer classification by neural network. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (13) ◽  
pp. 4021-4029
Author(s):  
Hyundoo Jeong ◽  
Zhandong Liu

Abstract Summary Single-cell RNA sequencing technology provides a novel means to analyze the transcriptomic profiles of individual cells. The technique is vulnerable, however, to a type of noise called dropout effects, which lead to zero-inflated distributions in the transcriptome profile and reduce the reliability of the results. Single-cell RNA sequencing data, therefore, need to be carefully processed before in-depth analysis. Here, we describe a novel imputation method that reduces dropout effects in single-cell sequencing. We construct a cell correspondence network and adjust gene expression estimates based on transcriptome profiles for the local subnetwork of cells of the same type. We comprehensively evaluated this method, called PRIME (PRobabilistic IMputation to reduce dropout effects in Expression profiles of single-cell sequencing), on synthetic and eight real single-cell sequencing datasets and verified that it improves the quality of visualization and accuracy of clustering analysis and can discover gene expression patterns hidden by noise. Availability and implementation The source code for the proposed method is freely available at https://github.com/hyundoo/PRIME. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Author(s):  
Alemu Takele Assefa ◽  
Jo Vandesompele ◽  
Olivier Thas

SummarySPsimSeq is a semi-parametric simulation method for bulk and single cell RNA sequencing data. It simulates data from a good estimate of the actual distribution of a given real RNA-seq dataset. In contrast to existing approaches that assume a particular data distribution, our method constructs an empirical distribution of gene expression data from a given source RNA-seq experiment to faithfully capture the data characteristics of real data. Importantly, our method can be used to simulate a wide range of scenarios, such as single or multiple biological groups, systematic variations (e.g. confounding batch effects), and different sample sizes. It can also be used to simulate different gene expression units resulting from different library preparation protocols, such as read counts or UMI counts.Availability and implementationThe R package and associated documentation is available from https://github.com/CenterForStatistics-UGent/SPsimSeq.Supplementary informationSupplementary data are available at bioRχiv online.


Author(s):  
Meichen Dong ◽  
Aatish Thennavan ◽  
Eugene Urrutia ◽  
Yun Li ◽  
Charles M Perou ◽  
...  

Abstract Recent advances in single-cell RNA sequencing (scRNA-seq) enable characterization of transcriptomic profiles with single-cell resolution and circumvent averaging artifacts associated with traditional bulk RNA sequencing (RNA-seq) data. Here, we propose SCDC, a deconvolution method for bulk RNA-seq that leverages cell-type specific gene expression profiles from multiple scRNA-seq reference datasets. SCDC adopts an ENSEMBLE method to integrate deconvolution results from different scRNA-seq datasets that are produced in different laboratories and at different times, implicitly addressing the problem of batch-effect confounding. SCDC is benchmarked against existing methods using both in silico generated pseudo-bulk samples and experimentally mixed cell lines, whose known cell-type compositions serve as ground truths. We show that SCDC outperforms existing methods with improved accuracy of cell-type decomposition under both settings. To illustrate how the ENSEMBLE framework performs in complex tissues under different scenarios, we further apply our method to a human pancreatic islet dataset and a mouse mammary gland dataset. SCDC returns results that are more consistent with experimental designs and that reproduce more significant associations between cell-type proportions and measured phenotypes.


Sign in / Sign up

Export Citation Format

Share Document