scholarly journals Bayesian weighted Mendelian randomization for causal inference based on summary statistics

2019 ◽  
Author(s):  
Jia Zhao ◽  
Jingsi Ming ◽  
Xianghong Hu ◽  
Gang Chen ◽  
Jin Liu ◽  
...  

Abstract Motivation The results from Genome-Wide Association Studies (GWAS) on thousands of phenotypes provide an unprecedented opportunity to infer the causal effect of one phenotype (exposure) on another (outcome). Mendelian randomization (MR), an instrumental variable (IV) method, has been introduced for causal inference using GWAS data. Due to the polygenic architecture of complex traits/diseases and the ubiquity of pleiotropy, however, MR has many unique challenges compared to conventional IV methods. Results We propose a Bayesian weighted Mendelian randomization (BWMR) for causal inference to address these challenges. In our BWMR model, the uncertainty of weak effects owing to polygenicity has been taken into account and the violation of IV assumption due to pleiotropy has been addressed through outlier detection by Bayesian weighting. To make the causal inference based on BWMR computationally stable and efficient, we developed a variational expectation-maximization (VEM) algorithm. Moreover, we have also derived an exact closed-form formula to correct the posterior covariance which is often underestimated in variational inference. Through comprehensive simulation studies, we evaluated the performance of BWMR, demonstrating the advantage of BWMR over its competitors. Then we applied BWMR to make causal inference between 130 metabolites and 93 complex human traits, uncovering novel causal relationship between exposure and outcome traits. Availability and implementation The BWMR software is available at https://github.com/jiazhao97/BWMR. Supplementary information Supplementary data are available at Bioinformatics online.

2020 ◽  
Vol 36 (15) ◽  
pp. 4374-4376
Author(s):  
Ninon Mounier ◽  
Zoltán Kutalik

Abstract Summary Increasing sample size is not the only strategy to improve discovery in Genome Wide Association Studies (GWASs) and we propose here an approach that leverages published studies of related traits to improve inference. Our Bayesian GWAS method derives informative prior effects by leveraging GWASs of related risk factors and their causal effect estimates on the focal trait using multivariable Mendelian randomization. These prior effects are combined with the observed effects to yield Bayes Factors, posterior and direct effects. The approach not only increases power, but also has the potential to dissect direct and indirect biological mechanisms. Availability and implementation bGWAS package is freely available under a GPL-2 License, and can be accessed, alongside with user guides and tutorials, from https://github.com/n-mounier/bGWAS. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Author(s):  
Jingshu Wang ◽  
Qingyuan Zhao ◽  
Jack Bowden ◽  
Gilbran Hemani ◽  
George Davey Smith ◽  
...  

Over a decade of genome-wide association studies have led to the finding that significant genetic associations tend to spread across the genome for complex traits. The extreme polygenicity where "all genes affect every complex trait" complicates Mendelian Randomization studies, where natural genetic variations are used as instruments to infer the causal effect of heritable risk factors. We reexamine the assumptions of existing Mendelian Randomization methods and show how they need to be clarified to allow for pervasive horizontal pleiotropy and heterogeneous effect sizes. We propose a comprehensive framework GRAPPLE (Genome-wide mR Analysis under Pervasive PLEiotropy) to analyze the causal effect of target risk factors with heterogeneous genetic instruments and identify possible pleiotropic patterns from data. By using summary statistics from genome-wide association studies, GRAPPLE can efficiently use both strong and weak genetic instruments, detect the existence of multiple pleiotropic pathways, adjust for confounding risk factors, and determine the causal direction. With GRAPPLE, we analyze the effect of blood lipids, body mass index, and systolic blood pressure on 25 disease outcomes, gaining new information on their causal relationships and the potential pleiotropic pathways.


Author(s):  
Xiaofeng Zhu ◽  
Xiaoyin Li ◽  
Rong Xu ◽  
Tao Wang

Abstract Motivation The overall association evidence of a genetic variant with multiple traits can be evaluated by cross-phenotype association analysis using summary statistics from genome-wide association studies. Further dissecting the association pathways from a variant to multiple traits is important to understand the biological causal relationships among complex traits. Results Here, we introduce a flexible and computationally efficient Iterative Mendelian Randomization and Pleiotropy (IMRP) approach to simultaneously search for horizontal pleiotropic variants and estimate causal effect. Extensive simulations and real data applications suggest that IMRP has similar or better performance than existing Mendelian Randomization methods for both causal effect estimation and pleiotropic variant detection. The developed pleiotropy test is further extended to detect colocalization for multiple variants at a locus. IMRP will greatly facilitate our understanding of causal relationships underlying complex traits, in particular, when a large number of genetic instrumental variables are used for evaluating multiple traits. Availability and implementation The software IMRP is available at https://github.com/XiaofengZhuCase/IMRP. The simulation codes can be downloaded at http://hal.case.edu/∼xxz10/zhu-web/ under the link: MR Simulations software. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Author(s):  
Tom G Richardson ◽  
Gibran Hemani ◽  
Tom R Gaunt ◽  
Caroline L Relton ◽  
George Davey Smith

AbstractBackgroundDeveloping insight into tissue-specific transcriptional mechanisms can help improve our understanding of how genetic variants exert their effects on complex traits and disease. By applying the principles of Mendelian randomization, we have undertaken a systematic analysis to evaluate transcriptome-wide associations between gene expression across 48 different tissue types and 395 complex traits.ResultsOverall, we identified 100,025 gene-trait associations based on conventional genome-wide corrections (P < 5 × 10−08) that also provided evidence of genetic colocalization. These results indicated that genetic variants which influence gene expression levels in multiple tissues are more likely to influence multiple complex traits. We identified many examples of tissue-specific effects, such as genetically-predicted TPO, NR3C2 and SPATA13 expression only associating with thyroid disease in thyroid tissue. Additionally, FBN2 expression was associated with both cardiovascular and lung function traits, but only when analysed in heart and lung tissue respectively.We also demonstrate that conducting phenome-wide evaluations of our results can help flag adverse on-target side effects for therapeutic intervention, as well as propose drug repositioning opportunities. Moreover, we find that exploring the tissue-dependency of associations identified by genome-wide association studies (GWAS) can help elucidate the causal genes and tissues responsible for effects, as well as uncover putative novel associations.ConclusionsThe atlas of tissue-dependent associations we have constructed should prove extremely valuable to future studies investigating the genetic determinants of complex disease. The follow-up analyses we have performed in this study are merely a guide for future research. Conducting similar evaluations can be undertaken systematically at http://mrcieu.mrsoftware.org/Tissue_MR_atlas/.


2020 ◽  
Vol 36 (18) ◽  
pp. 4749-4756 ◽  
Author(s):  
Alexey A Shadrin ◽  
Oleksandr Frei ◽  
Olav B Smeland ◽  
Francesco Bettella ◽  
Kevin S O'Connell ◽  
...  

Abstract Motivation Determining the relative contributions of functional genetic categories is fundamental to understanding the genetic etiology of complex human traits and diseases. Here, we present Annotation Informed-MiXeR, a likelihood-based method for estimating the number of variants influencing a phenotype and their effect sizes across different functional annotation categories of the genome using summary statistics from genome-wide association studies. Results Extensive simulations demonstrate that the model is valid for a broad range of genetic architectures. The model suggests that complex human phenotypes substantially differ in the number of causal variants, their localization in the genome and their effect sizes. Specifically, the exons of protein-coding genes harbor more than 90% of variants influencing type 2 diabetes and inflammatory bowel disease, making them good candidates for whole-exome studies. In contrast, &lt;10% of the causal variants for schizophrenia, bipolar disorder and attention-deficit/hyperactivity disorder are located in protein-coding exons, indicating a more substantial role of regulatory mechanisms in the pathogenesis of these disorders. Availability and implementation The software is available at: https://github.com/precimed/mixer. Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Author(s):  
Gui-Juan Feng ◽  
Qian Xu ◽  
Jing-Jing Ni ◽  
Shan-Shan Yang ◽  
Bai-Xue Han ◽  
...  

Abstract Age at menarche (AAM) is a sign of puberty of females. It is a heritable trait associated with various adult diseases. However, the genetic mechanism that determines AAM and links it to disease risk is poorly understood. Aiming to uncover the genetic basis for AAM, we conducted a joint association study in up to 438,089 participants from 3 genome-wide association studies of European and East Asian ancestries. Twenty-one novel genomic loci were identified at the genome-wide significance level. Besides, we observed significant genetic correlations between AAM and 67 complex traits, and the highest genetic correlation was observed between AAM and body mass index (rg=-0.19, P=6.11×10−31). Latent causal variable analyses demonstrate that there is a genetically causal effect of AAM on high blood pressure (GCP=0.47, P=0.02), forced vital capacity (GCP=0.63, P=0.02), age at first live birth (GCP=0.51, P=0.03), impedance of right arm (GCP=0.41, P<1×10-7) and right leg fat percentage (GCP=-0.10, P=0.02), etc. Enrichment analysis identified 5 enriched tissues and 51 enriched gene sets. Four of the five enriched tissues were related to the nervous system, including the hypothalamus middle, hypothalamo hypophyseal system, neurosecretory systems and hypothalamus. The fifth tissue was the retina in the sensory organ. The most significant gene set was the ‘decreased circulating luteinizing hormone level’ (P=2.45×10-6). Our findings may provide useful insights that elucidate the mechanisms determining AAM and the genetic interplay between AAM and some traits of women.


2020 ◽  
Author(s):  
Ruth E Mitchell ◽  
Kirsty Bates ◽  
Robyn E Wootton ◽  
Adil Harroud ◽  
J. Brent Richards ◽  
...  

AbstractThe causes of multiple sclerosis (MS) remain unknown. Smoking has been associated with MS in observational studies and is often thought of as an environmental risk factor. We used two-sample Mendelian Randomization (MR) to examined whether this association is causal using genetic variants identified in genome-wide association studies (GWAS) as associated with smoking. We assessed both smoking initiation and lifetime smoking behaviour (which captures smoking duration, heaviness and cessation). There was very limited evidence for a meaningful effect of smoking on MS susceptibility was measured using summary statistics from the International Multiple Sclerosis Genetics Consortium (IMSGC) meta-analysis, including 14,802 cases and 26,703 controls. There was no clear evidence for an effect of smoking on the risk of developing MS (smoking initiation: odds ratio [OR] 1.03, 95% confidence interval [CI] 0.92-1.61; lifetime smoking: OR 1.10, 95% CI 0.87-1.40). These findings suggest that smoking does not have a detrimental consequence on MS susceptibility. Further work is needed to determine the causal effect of smoking on MS progression.


2017 ◽  
Author(s):  
Gibran Hemani ◽  
Jack Bowden ◽  
Philip Haycock ◽  
Jie Zheng ◽  
Oliver Davis ◽  
...  

AbstractA major application for genome-wide association studies (GWAS) has been the emerging field of causal inference using Mendelian randomization (MR), where the causal effect between a pair of traits can be estimated using only summary level data. MR depends on SNPs exhibiting vertical pleiotropy, where the SNP influences an outcome phenotype only through an exposure phenotype. Issues arise when this assumption is violated due to SNPs exhibiting horizontal pleiotropy. We demonstrate that across a range of pleiotropy models, instrument selection will be increasingly liable to selecting invalid instruments as GWAS sample sizes continue to grow. Methods have been developed in an attempt to protect MR from different patterns of horizontal pleiotropy, and here we have designed a mixture-of-experts machine learning framework (MR-MoE 1.0) that predicts the most appropriate model to use for any specific causal analysis, improving on both power and false discovery rates. Using the approach, we systematically estimated the causal effects amongst 2407 phenotypes. Almost 90% of causal estimates indicated some level of horizontal pleiotropy. The causal estimates are organised into a publicly available graph database (http://eve.mrbase.org), and we use it here to highlight the numerous challenges that remain in automated causal inference.


Author(s):  
Eleonora Porcu ◽  
Annique Claringbould ◽  
Kaido Lepik ◽  
Tom G. Richardson ◽  
Federico A. Santoni ◽  
...  

AbstractThe genetic underpinning of sexual dimorphism is very poorly understood. The prevalence of many diseases differs between men and women, which could be in part caused by sex-specific genetic effects. Nevertheless, only a few published genome-wide association studies (GWAS) were performed separately in each sex. The reported enrichment of expression quantitative trait loci (eQTLs) among GWAS–associated SNPs suggests a potential role of sex-specific eQTLs in the sex-specific genetic mechanism underlying complex traits.To explore this scenario, we performed a genome-wide analysis of sex-specific whole blood RNA-seq eQTLs from 3,447 individuals. Among 9 million SNP-gene pairs showing sex-combined associations, we found 18 genes with significant sex-specific cis-eQTLs (FDR 5%). Our phenome-wide association study of the 18 top sex-specific eQTLs on >700 traits unraveled that these eQTLs do not systematically translate into detectable sex-specific trait-associations. Power analyses using real eQTL- and causal effect sizes showed that millions of samples would be necessary to observe sex-specific trait associations that are fully driven by sex-specific cis-eQTLs. Compensatory effects may further hamper their detection. In line with this observation, we confirmed that the sex-specific trait-associations detected so far are not driven by sex-specific cis-eQTLs.


2019 ◽  
Author(s):  
Zhongshang Yuan ◽  
Huanhuan Zhu ◽  
Ping Zeng ◽  
Sheng Yang ◽  
Shiquan Sun ◽  
...  

AbstractIntegrating association results from both genome-wide association studies (GWASs) and expression quantitative trait locus (eQTL) mapping studies has the potential to shed light on the molecular mechanisms underlying disease etiology. Several statistical methods have been recently developed to integrate GWASs with eQTL studies in the form of transcriptome-wide association studies (TWASs). These existing methods can all be viewed as a form of two sample Mendelian randomization (MR) analysis, which has been widely applied in various GWASs for inferring the causal relationship among complex traits. Unfortunately, most existing TWAS and MR methods make an unrealistic modeling assumption and assume that instrumental variables do not exhibit horizontal pleiotropic effects. However, horizontal pleiotropic effects have been recently discovered to be wide spread across complex traits, and, as we will show here, are also wide spread across gene expression traits. Therefore, not allowing for horizontal pleiotropic effects can be overly restrictive, and, as we will be show here, can lead to a substantial inflation of test statistics and subsequently false discoveries in TWAS applications. Here, we present a probabilistic MR method, which we refer to as PMR-Egger, for testing and controlling for horizontal pleiotropic effects in TWAS applications. PMR-Egger relies on an MR likelihood framework that unifies many existing TWAS and MR methods, accommodates multiple correlated instruments, tests the causal effect of gene on trait in the presence of horizontal pleiotropy, and, with a newly developed parameter expansion version of the expectation maximization algorithm, is scalable to hundreds of thousands of individuals. With extensive simulations, we show that PMR-Egger provides calibrated type I error control for causal effect testing in the presence of horizontal pleiotropic effects, is reasonably robust for various types of horizontal pleiotropic effect mis-specifications, is more powerful than existing MR approaches, and, as a by-product, can directly test for horizontal pleiotropy. We illustrate the benefits of PMR-Egger in applications to 39 diseases and complex traits obtained from three GWASs including the UK Biobank. In these applications, we show how PMR-Egger can lead to new biological discoveries through integrative analysis.


Sign in / Sign up

Export Citation Format

Share Document