scholarly journals Modeling the organization of the WUSCHEL expression domain in the shoot apical meristem

2005 ◽  
Vol 21 (Suppl 1) ◽  
pp. i232-i240 ◽  
Author(s):  
H. Jonsson ◽  
M. Heisler ◽  
G. V. Reddy ◽  
V. Agrawal ◽  
V. Gor ◽  
...  
2006 ◽  
Vol 1 (2) ◽  
pp. 263-274 ◽  
Author(s):  
Kai Müller ◽  
Jinxing Lin ◽  
Rainer Fischer ◽  
Dirk Prüfer

AbstractThe tobacco knox1 genes tokn1 and tokn2 were isolated and their neomorphic capacities were tested while expressed in tobacco and potato. In addition, their neomorphic capacities were compared to barley bkn3 transgenic plant material. While tokn2 and bkn3 induced epiphylly in tobacco and supercompound leaves in potato, tokn1 failed to produce such prominent knox1 specific phenotypes. In wild type tobacco, alleles of the tokn genes were found to be expressed within distinct zones of the shoot apical meristem (SAM), leaving out regions that correlated with leaf founder cells [1]. In contrast, the expression of the tokn genes was detected throughout the meristem and in leaf primordia of epiphyllous shoots that developed in tobacco over-expressing the barley hooded gene bkn3. It was determined that such extended expression domains of resident tobacco knox1 genes were mediated through an enhanced expression domain of bkn3 within the tissue confined to the epiphylls, and this contributed to “repeated epiphylly”, i.e. an iterated development of epiphyllous shoots on leaves of progenitor epiphylls.


Development ◽  
1999 ◽  
Vol 126 (16) ◽  
pp. 3629-3636 ◽  
Author(s):  
N. Satoh ◽  
S.K. Hong ◽  
A. Nishimura ◽  
M. Matsuoka ◽  
H. Kitano ◽  
...  

The regulatory mechanism of shoot apical meristem (SAM) initiation is an important subject in developmental plant biology. We characterized nine recessive mutations derived from four independent loci (SHL1-SHL4) causing the deletion of the SAM. Radicles were produced in these mutant embryos. Concomitant with the loss of SAM, two embryo-specific organs, coleoptile and epiblast, were lost, but the scutellum was formed normally. Therefore, differentiation of radicle and scutellum is regulated independently of SAM, but that of coleoptile and epiblast may depend on SAM. Regeneration experiments using adventitious shoots from the scutellum-derived calli showed that no adventitious shoots were regenerated in any shl mutant. However, small adventitious leaves were observed in both mutant and wild-type calli, but they soon became necrotic and showed no extensive growth. Thus, leaf primordia can initiate in the absence of SAM, but their extensive growth requires the SAM. An in situ hybridization experiment using a rice homeobox gene, OSH1, as a probe revealed that shl1 and shl2 modified the expression domain of OSH1, but normal expression of OSH1 was observed in shl3 and shl4 embryos. Accordingly, SHL1 and SHL2 function upstream of OSH1, and SHL3 and SHL4 downstream or independently of OSH1. These shl mutants are useful for elucidating the genetic program driving SAM initiation and for unraveling the interrelationships among various organs in grass embryos.


Genetics ◽  
2003 ◽  
Vol 164 (1) ◽  
pp. 335-346
Author(s):  
Namiko Satoh ◽  
Jun-Ichi Itoh ◽  
Yasuo Nagato

Abstract To characterize the SHL2 and SHL1 genes in detail, we analyzed three strains carrying weak alleles of SHL2, shl2-6, shl2-7, and shl2-8, and one weak allele of SHL1, shl1-3. In contrast to strong alleles, which result in lack of shoot meristem, strains bearing these weak alleles formed shoot meristem frequently during embryogenesis. In shl2-6 and shl2-7 mutants, the meristem was lost during seed development. Only the shl2-8 mutant could survive after germination, but it showed abnormal initiation pattern and morphology of leaves. In strains bearing the weak alleles, the shoot meristem was composed of a small number of indeterminate cells and ultimately converted into leaf primordium. The shl1-3 mutant showed phenotypes similar to those of shl2-8. Thus SHL2 and SHL1 are required for both initiation and maintenance of shoot meristem. In shl2 mutants, there was a positive correlation between the size of the expression domain of OSH1 representing the number of indeterminate cells, the frequency of shoot meristem initiation, and the duration of meristem survival. Thus the shoot meristem will not initiate in an “all-or-nothing” fashion, but is formed in various degrees depending on the strength of the alleles. Double-mutant analyses indicate that SHL2 functions upstream of SHO to establish proper organization of the shoot meristem.


PLoS Genetics ◽  
2020 ◽  
Vol 16 (4) ◽  
pp. e1008661 ◽  
Author(s):  
Hasthi Ram ◽  
Sudeep Sahadevan ◽  
Nittaya Gale ◽  
Monica Pia Caggiano ◽  
Xiulian Yu ◽  
...  

2012 ◽  
Vol 3 (1) ◽  
pp. 3 ◽  
Author(s):  
Chui E. Wong ◽  
Mohan B. Singh ◽  
Prem L. Bhalla

The shoot apical meristem houses stem cells responsible for the continuous formation of aerial plant organs including leaves and stems throughout the life of plants. Laser-microdissection in combination with high-throughput technology such as next generation sequencing permits an in-depth analysis of molecular events associated with specific cell type of interest. Sample preparation is the most critical step in ensuring good quality RNA to be extracted from samples following laser-microdissection. Here, we optimized the sample preparation for a major legume crop, soybean. We used Farmer’s solution as a fixative and paraffin as the embedding medium for soybean shoot apical meristem tissue without the use of any specialized equipment. Shorter time for tissue fixation (two days) was found to be critical for the preservation of RNA in soybean shoot apical meristem. We further demonstrated the utility of this method for different tissues derived from soybean and rice. The method outlined here shall facilitate studies on crop plants involving laser-microdissection.


Planta ◽  
2002 ◽  
Vol 214 (6) ◽  
pp. 829-836 ◽  
Author(s):  
Andreas Mordhorst ◽  
Marijke Hartog ◽  
Mazen El Tamer ◽  
Thomas Laux ◽  
Sacco de Vries

Cell ◽  
2011 ◽  
Vol 145 (2) ◽  
pp. 242-256 ◽  
Author(s):  
Hongliang Zhu ◽  
Fuqu Hu ◽  
Ronghui Wang ◽  
Xin Zhou ◽  
Sing-Hoi Sze ◽  
...  

Cell Reports ◽  
2015 ◽  
Vol 10 (11) ◽  
pp. 1819-1827 ◽  
Author(s):  
Yuyi Zhou ◽  
Minami Honda ◽  
Hongliang Zhu ◽  
Zhonghui Zhang ◽  
Xinwei Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document