scholarly journals Joint haplotype phasing and genotype calling of multiple individuals using haplotype informative reads

2013 ◽  
Vol 29 (19) ◽  
pp. 2427-2434 ◽  
Author(s):  
Kui Zhang ◽  
Degui Zhi
2009 ◽  
Vol 3 (Suppl 7) ◽  
pp. S59 ◽  
Author(s):  
Maren Vens ◽  
Arne Schillert ◽  
Inke R König ◽  
Andreas Ziegler
Keyword(s):  

2017 ◽  
Vol 35 (9) ◽  
pp. 852-857 ◽  
Author(s):  
Fan Zhang ◽  
Lena Christiansen ◽  
Jerushah Thomas ◽  
Dmitry Pokholok ◽  
Ros Jackson ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Junfu Guo ◽  
Chang Shi ◽  
Xi Chen ◽  
Ou Wang ◽  
Ping Liu ◽  
...  

Co-barcoded reads originating from long DNA fragments (mean length >30 kbp) maintain both single base level accuracy and long-range genomic information. We propose a pipeline, stLFRsv, to detect structural variation using co-barcoded reads. stLFRsv identifies abnormal large gaps between co-barcoded reads to detect potential breakpoints and reconstruct complex structural variants (SVs). Haplotype phasing by co-barcoded reads increases the signal to noise ratio, and barcode sharing profiles are used to filter out false positives. We integrate the short read SV caller smoove for smaller variants with stLFRsv. The integrated pipeline was evaluated on the well-characterized genome HG002/NA24385, and 74.5% precision and a 22.4% recall rate were obtained for deletions. stLFRsv revealed some large variants not included in the benchmark set that were verified by long reads or assembly. For the HG001/NA12878 genome, stLFRsv also achieved the best performance for both resource usage and the detection of large variants. Our work indicates that co-barcoded read technology has the potential to improve genome completeness.


2017 ◽  
Author(s):  
Ruibang Luo ◽  
Fritz J. Sedlazeck ◽  
Charlotte A. Darby ◽  
Stephen M. Kelly ◽  
Michael C. Schatz

AbstractMotivationLinked reads are a form of DNA sequencing commercialized by 10X Genomics that uses highly multiplexed barcoding within microdroplets to tag short reads to progenitor molecules. The linked reads, spanning tens to hundreds of kilobases, offer an alternative to long-read sequencing for de novo assembly, haplotype phasing and other applications. However, there is no available simulator, making it difficult to measure their capability or develop new informatics tools.ResultsOur analysis of 13 real linked read datasets revealed their characteristics of barcodes, molecules and partitions. Based on this, we introduce LRSim that simulates linked reads by emulating the library preparation and sequencing process with fine control of 1) the number of simulated variants; 2) the linked-read characteristics; and 3) the Illumina reads profile. We conclude from the phasing and genome assembly of multiple datasets, recommendations on coverage, fragment length, and partitioning when sequencing human and non-human genome.AvailabilityLRSIM is under MIT license and is freely available at https://github.com/aquaskyline/[email protected]


2016 ◽  
Author(s):  
Peizhou Liao ◽  
Glen A. Satten ◽  
Yi-juan Hu

ABSTRACTA fundamental challenge in analyzing next-generation sequencing data is to determine an individual’s genotype correctly as the accuracy of the inferred genotype is essential to downstream analyses. Some genotype callers, such as GATK and SAMtools, directly calculate the base-calling error rates from phred scores or recalibrated base quality scores. Others, such as SeqEM, estimate error rates from the read data without using any quality scores. It is also a common quality control procedure to filter out reads with low phred scores. However, choosing an appropriate phred score threshold is problematic as a too-high threshold may lose data while a too-low threshold may introduce errors. We propose a new likelihood-based genotype-calling approach that exploits all reads and estimates the per-base error rates by incorporating phred scores through a logistic regression model. The algorithm, which we call PhredEM, uses the Expectation-Maximization (EM) algorithm to obtain consistent estimates of genotype frequencies and logistic regression parameters. We also develop a simple, computationally efficient screening algorithm to identify loci that are estimated to be monomorphic, so that only loci estimated to be non-monomorphic require application of the EM algorithm. We evaluate the performance of PhredEM using both simulated data and real sequencing data from the UK10K project. The results demonstrate that PhredEM is an improved, robust and widely applicable genotype-calling approach for next-generation sequencing studies. The relevant software is freely available.


Sign in / Sign up

Export Citation Format

Share Document