scholarly journals ACTINN: automated identification of cell types in single cell RNA sequencing

Author(s):  
Feiyang Ma ◽  
Matteo Pellegrini

Abstract Motivation Cell type identification is one of the major goals in single cell RNA sequencing (scRNA-seq). Current methods for assigning cell types typically involve the use of unsupervised clustering, the identification of signature genes in each cluster, followed by a manual lookup of these genes in the literature and databases to assign cell types. However, there are several limitations associated with these approaches, such as unwanted sources of variation that influence clustering and a lack of canonical markers for certain cell types. Here, we present ACTINN (Automated Cell Type Identification using Neural Networks), which employs a neural network with three hidden layers, trains on datasets with predefined cell types and predicts cell types for other datasets based on the trained parameters. Results We trained the neural network on a mouse cell type atlas (Tabula Muris Atlas) and a human immune cell dataset, and used it to predict cell types for mouse leukocytes, human PBMCs and human T cell sub types. The results showed that our neural network is fast and accurate, and should therefore be a useful tool to complement existing scRNA-seq pipelines. Availability and implementation The codes and datasets are available at https://figshare.com/articles/ACTINN/8967116. Tutorial is available at https://github.com/mafeiyang/ACTINN. All codes are implemented in python. Supplementary information Supplementary data are available at Bioinformatics online.

2019 ◽  
Author(s):  
Feiyang Ma ◽  
Matteo Pellegrini

AbstractCell type identification is one of the major goals in single cell RNA sequencing (scRNA-seq). Current methods for assigning cell types typically involve the use of unsupervised clustering, the identification of signature genes in each cluster, followed by a manual lookup of these genes in the literature and databases to assign cell types. However, there are several limitations associated with these approaches, such as unwanted sources of variation that influence clustering and a lack of canonical markers for certain cell types. Here, we present ACTINN (Automated Cell Type Identification using Neural Networks), which employs a neural network with 3 hidden layers, trains on datasets with predefined cell types, and predicts cell types for other datasets based on the trained parameters. We trained the neural network on a mouse cell type atlas (Tabula Muris Atlas) and a human immune cell dataset, and used it to predict cell types for mouse leukocytes, human PBMCs and human T cell sub types. The results showed that our neural network is fast and accurate, and should therefore be a useful tool to complement existing scRNA-seq pipelines.Author SummarySingle cell RNA sequencing (scRNA-seq) provides high resolution profiling of the transcriptomes of individual cells, which inevitably results in high volumes of data that require complex data processing pipelines. Usually, one of the first steps in the analysis of scRNA-seq is to assign individual cells to known cell types. To accomplish this, traditional methods first group the cells into different clusters, then find marker genes, and finally use these to manually assign cell types for each cluster. Thus these methods require prior knowledge of cell type canonical markers, and some level of subjectivity to make the cell type assignments. As a result, the process is often laborious and requires domain specific expertise, which is a barrier for inexperienced users. By contrast, our neural network ACTINN automatically learns the features for each predefined cell type and uses these features to predict cell types for individual cells. This approach is computationally efficient and requires no domain expertise of the tissues being studied. We believe ACTINN allows users to rapidly identify cell types in their datasets, thus rendering the analysis of their scRNA-seq datasets more efficient.


2020 ◽  
Vol 36 (12) ◽  
pp. 3825-3832
Author(s):  
Wenming Wu ◽  
Xiaoke Ma

Abstract Motivation Single-cell RNA-sequencing (scRNA-seq) profiles transcriptome of individual cells, which enables the discovery of cell types or subtypes by using unsupervised clustering. Current algorithms perform dimension reduction before cell clustering because of noises, high-dimensionality and linear inseparability of scRNA-seq data. However, independence of dimension reduction and clustering fails to fully characterize patterns in data, resulting in an undesirable performance. Results In this study, we propose a flexible and accurate algorithm for scRNA-seq data by jointly learning dimension reduction and cell clustering (aka DRjCC), where dimension reduction is performed by projected matrix decomposition and cell type clustering by non-negative matrix factorization. We first formulate joint learning of dimension reduction and cell clustering into a constrained optimization problem and then derive the optimization rules. The advantage of DRjCC is that feature selection in dimension reduction is guided by cell clustering, significantly improving the performance of cell type discovery. Eleven scRNA-seq datasets are adopted to validate the performance of algorithms, where the number of single cells varies from 49 to 68 579 with the number of cell types ranging from 3 to 14. The experimental results demonstrate that DRjCC significantly outperforms 13 state-of-the-art methods in terms of various measurements on cell type clustering (on average 17.44% by improvement). Furthermore, DRjCC is efficient and robust across different scRNA-seq datasets from various tissues. The proposed model and methods provide an effective strategy to analyze scRNA-seq data. Availability and implementation The software is coded using matlab, and is free available for academic https://github.com/xkmaxidian/DRjCC. Supplementary information Supplementary data are available at Bioinformatics online.


Cephalalgia ◽  
2018 ◽  
Vol 38 (13) ◽  
pp. 1976-1983 ◽  
Author(s):  
William Renthal

Background Migraine is a debilitating disorder characterized by severe headaches and associated neurological symptoms. A key challenge to understanding migraine has been the cellular complexity of the human brain and the multiple cell types implicated in its pathophysiology. The present study leverages recent advances in single-cell transcriptomics to localize the specific human brain cell types in which putative migraine susceptibility genes are expressed. Methods The cell-type specific expression of both familial and common migraine-associated genes was determined bioinformatically using data from 2,039 individual human brain cells across two published single-cell RNA sequencing datasets. Enrichment of migraine-associated genes was determined for each brain cell type. Results Analysis of single-brain cell RNA sequencing data from five major subtypes of cells in the human cortex (neurons, oligodendrocytes, astrocytes, microglia, and endothelial cells) indicates that over 40% of known migraine-associated genes are enriched in the expression profiles of a specific brain cell type. Further analysis of neuronal migraine-associated genes demonstrated that approximately 70% were significantly enriched in inhibitory neurons and 30% in excitatory neurons. Conclusions This study takes the next step in understanding the human brain cell types in which putative migraine susceptibility genes are expressed. Both familial and common migraine may arise from dysfunction of discrete cell types within the neurovascular unit, and localization of the affected cell type(s) in an individual patient may provide insight into to their susceptibility to migraine.


Author(s):  
Jun Cheng ◽  
Wenduo Gu ◽  
Ting Lan ◽  
Jiacheng Deng ◽  
Zhichao Ni ◽  
...  

Abstract Aims Hypertension is a major risk factor for cardiovascular diseases. However, vascular remodelling, a hallmark of hypertension, has not been systematically characterized yet. We described systematic vascular remodelling, especially the artery type- and cell type-specific changes, in hypertension using spontaneously hypertensive rats (SHRs). Methods and results Single-cell RNA sequencing was used to depict the cell atlas of mesenteric artery (MA) and aortic artery (AA) from SHRs. More than 20 000 cells were included in the analysis. The number of immune cells more than doubled in aortic aorta in SHRs compared to Wistar Kyoto controls, whereas an expansion of MA mesenchymal stromal cells (MSCs) was observed in SHRs. Comparison of corresponding artery types and cell types identified in integrated datasets unravels dysregulated genes specific for artery types and cell types. Intersection of dysregulated genes with curated gene sets including cytokines, growth factors, extracellular matrix (ECM), receptors, etc. revealed vascular remodelling events involving cell–cell interaction and ECM re-organization. Particularly, AA remodelling encompasses upregulated cytokine genes in smooth muscle cells, endothelial cells, and especially MSCs, whereas in MA, change of genes involving the contractile machinery and downregulation of ECM-related genes were more prominent. Macrophages and T cells within the aorta demonstrated significant dysregulation of cellular interaction with vascular cells. Conclusion Our findings provide the first cell landscape of resistant and conductive arteries in hypertensive animal models. Moreover, it also offers a systematic characterization of the dysregulated gene profiles with unbiased, artery type-specific and cell type-specific manners during hypertensive vascular remodelling.


2019 ◽  
Vol 47 (16) ◽  
pp. e95-e95 ◽  
Author(s):  
Jurrian K de Kanter ◽  
Philip Lijnzaad ◽  
Tito Candelli ◽  
Thanasis Margaritis ◽  
Frank C P Holstege

Abstract Cell type identification is essential for single-cell RNA sequencing (scRNA-seq) studies, currently transforming the life sciences. CHETAH (CHaracterization of cEll Types Aided by Hierarchical classification) is an accurate cell type identification algorithm that is rapid and selective, including the possibility of intermediate or unassigned categories. Evidence for assignment is based on a classification tree of previously available scRNA-seq reference data and includes a confidence score based on the variance in gene expression per cell type. For cell types represented in the reference data, CHETAH’s accuracy is as good as existing methods. Its specificity is superior when cells of an unknown type are encountered, such as malignant cells in tumor samples which it pinpoints as intermediate or unassigned. Although designed for tumor samples in particular, the use of unassigned and intermediate types is also valuable in other exploratory studies. This is exemplified in pancreas datasets where CHETAH highlights cell populations not well represented in the reference dataset, including cells with profiles that lie on a continuum between that of acinar and ductal cell types. Having the possibility of unassigned and intermediate cell types is pivotal for preventing misclassification and can yield important biological information for previously unexplored tissues.


2016 ◽  
Author(s):  
Damian Wollny ◽  
Sheng Zhao ◽  
Ana Martin-Villalba

Single cell RNA sequencing technology has emerged as a promising tool to uncover previously neglected cellular heterogeneity. Multiple methods and protocols have been developed to apply single cell sequencing to different cell types from various organs. However, library preparation for RNA sequencing remains challenging for cell types with high RNAse content due to rapid degradation of endogenous RNA molecules upon cell lysis. To this end, we developed a protocol based on the SMART-seq2 technology for single cell RNA sequencing of pancreatic acinar cells, the cell type with one of the highest ribonuclease concentration measured to date. This protocol reliably produces high quality libraries from single acinar cells reaching a total of 5x106 reads / cell and ∼ 80% transcript mapping rate with no detectable 3´end bias. Thus, our protocol makes single cell transcriptomics accessible to cell type with very high RNAse content.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Bobby Ranjan ◽  
Florian Schmidt ◽  
Wenjie Sun ◽  
Jinyu Park ◽  
Mohammad Amin Honardoost ◽  
...  

Abstract Background Clustering is a crucial step in the analysis of single-cell data. Clusters identified in an unsupervised manner are typically annotated to cell types based on differentially expressed genes. In contrast, supervised methods use a reference panel of labelled transcriptomes to guide both clustering and cell type identification. Supervised and unsupervised clustering approaches have their distinct advantages and limitations. Therefore, they can lead to different but often complementary clustering results. Hence, a consensus approach leveraging the merits of both clustering paradigms could result in a more accurate clustering and a more precise cell type annotation. Results We present scConsensus, an $${\mathbf {R}}$$ R framework for generating a consensus clustering by (1) integrating results from both unsupervised and supervised approaches and (2) refining the consensus clusters using differentially expressed genes. The value of our approach is demonstrated on several existing single-cell RNA sequencing datasets, including data from sorted PBMC sub-populations. Conclusions scConsensus combines the merits of unsupervised and supervised approaches to partition cells with better cluster separation and homogeneity, thereby increasing our confidence in detecting distinct cell types. scConsensus is implemented in $${\mathbf {R}}$$ R and is freely available on GitHub at https://github.com/prabhakarlab/scConsensus.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiuying Li ◽  
Guillaume Noell ◽  
Tracy Tabib ◽  
Alyssa D. Gregory ◽  
Humberto E. Trejo Bittar ◽  
...  

Abstract Background Whole lung tissue transcriptomic profiling studies in chronic obstructive pulmonary disease (COPD) have led to the identification of several genes associated with the severity of airflow limitation and/or the presence of emphysema, however, the cell types driving these gene expression signatures remain unidentified. Methods To determine cell specific transcriptomic changes in severe COPD, we conducted single-cell RNA sequencing (scRNA seq) on n = 29,961 cells from the peripheral lung parenchymal tissue of nonsmoking subjects without underlying lung disease (n = 3) and patients with severe COPD (n = 3). The cell type composition and cell specific gene expression signature was assessed. Gene set enrichment analysis (GSEA) was used to identify the specific cell types contributing to the previously reported transcriptomic signatures. Results T-distributed stochastic neighbor embedding and clustering of scRNA seq data revealed a total of 17 distinct populations. Among them, the populations with more differentially expressed genes in cases vs. controls (log fold change >|0.4| and FDR = 0.05) were: monocytes (n = 1499); macrophages (n = 868) and ciliated epithelial cells (n = 590), respectively. Using GSEA, we found that only ciliated and cytotoxic T cells manifested a trend towards enrichment of the previously reported 127 regional emphysema gene signatures (normalized enrichment score [NES] = 1.28 and = 1.33, FDR = 0.085 and = 0.092 respectively). Among the significantly altered genes present in ciliated epithelial cells of the COPD lungs, QKI and IGFBP5 protein levels were also found to be altered in the COPD lungs. Conclusions scRNA seq is useful for identifying transcriptional changes and possibly individual protein levels that may contribute to the development of emphysema in a cell-type specific manner.


2020 ◽  
Author(s):  
Jiaxin Fan ◽  
Xuran Wang ◽  
Rui Xiao ◽  
Mingyao Li

AbstractAllelic expression imbalance (AEI), quantified by the relative expression of two alleles of a gene in a diploid organism, can help explain phenotypic variations among individuals. Traditional methods detect AEI using bulk RNA sequencing (RNA-seq) data, a data type that averages out cell-to-cell heterogeneity in gene expression across cell types. Since the patterns of AEI may vary across different cell types, it is desirable to study AEI in a cell-type-specific manner. Although this can be achieved by single-cell RNA sequencing (scRNA-seq), it requires full-length transcript to be sequenced in single cells of a large number of individuals, which are still cost prohibitive to generate. To overcome this limitation and utilize the vast amount of existing disease relevant bulk tissue RNA-seq data, we developed BSCET, which enables the characterization of cell-type-specific AEI in bulk RNA-seq data by integrating cell type composition information inferred from a small set of scRNA-seq samples, possibly obtained from an external dataset. By modeling covariate effect, BSCET can also detect genes whose cell-type-specific AEI are associated with clinical factors. Through extensive benchmark evaluations, we show that BSCET correctly detected genes with cell-type-specific AEI and differential AEI between healthy and diseased samples using bulk RNA-seq data. BSCET also uncovered cell-type-specific AEIs that were missed in bulk data analysis when the directions of AEI are opposite in different cell types. We further applied BSCET to two pancreatic islet bulk RNA-seq datasets, and detected genes showing cell-type-specific AEI that are related to the progression of type 2 diabetes. Since bulk RNA-seq data are easily accessible, BSCET provided a convenient tool to integrate information from scRNA-seq data to gain insight on AEI with cell type resolution. Results from such analysis will advance our understanding of cell type contributions in human diseases.Author SummaryDetection of allelic expression imbalance (AEI), a phenomenon where the two alleles of a gene differ in their expression magnitude, is a key step towards the understanding of phenotypic variations among individuals. Existing methods detect AEI use bulk RNA sequencing (RNA-seq) data and ignore AEI variations among different cell types. Although single-cell RNA sequencing (scRNA-seq) has enabled the characterization of cell-to-cell heterogeneity in gene expression, the high costs have limited its application in AEI analysis. To overcome this limitation, we developed BSCET to characterize cell-type-specific AEI using the widely available bulk RNA-seq data by integrating cell-type composition information inferred from scRNA-seq samples. Since the degree of AEI may vary with disease phenotypes, we further extended BSCET to detect genes whose cell-type-specific AEIs are associated with clinical factors. Through extensive benchmark evaluations and analyses of two pancreatic islet bulk RNA-seq datasets, we demonstrated BSCET’s ability to refine bulk-level AEI to cell-type resolution, and to identify genes whose cell-type-specific AEIs are associated with the progression of type 2 diabetes. With the vast amount of easily accessible bulk RNA-seq data, we believe BSCET will be a valuable tool for elucidating cell type contributions in human diseases.


Sign in / Sign up

Export Citation Format

Share Document