scholarly journals hypeR: an R package for geneset enrichment workflows

Author(s):  
Anthony Federico ◽  
Stefano Monti

Abstract Summary Geneset enrichment is a popular method for annotating high-throughput sequencing data. Existing tools fall short in providing the flexibility to tackle the varied challenges researchers face in such analyses, particularly when analyzing many signatures across multiple experiments. We present a comprehensive R package for geneset enrichment workflows that offers multiple enrichment, visualization, and sharing methods in addition to novel features such as hierarchical geneset analysis and built-in markdown reporting. hypeR is a one-stop solution to performing geneset enrichment for a wide audience and range of use cases. Availability and implementation The most recent version of the package is available at https://github.com/montilab/hypeR. Contact [email protected] or [email protected]

2019 ◽  
Author(s):  
Anthony Federico ◽  
Stefano Monti

ABSTRACTSummaryGeneset enrichment is a popular method for annotating high-throughput sequencing data. Existing tools fall short in providing the flexibility to tackle the varied challenges researchers face in such analyses, particularly when analyzing many signatures across multiple experiments. We present a comprehensive R package for geneset enrichment workflows that offers multiple enrichment, visualization, and sharing methods in addition to novel features such as hierarchical geneset analysis and built-in markdown reporting. hypeR is a one-stop solution to performing geneset enrichment for a wide audience and range of use cases.Availability and implementationThe most recent version of the package is available at https://github.com/montilab/hypeR.Supplementary informationComprehensive documentation and tutorials, are available at https://montilab.github.io/hypeR-docs.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1466 ◽  
Author(s):  
Erik Fasterius ◽  
Cristina Al-Khalili Szigyarto

High throughput sequencing technologies are flourishing in the biological sciences, enabling unprecedented insights into e.g. genetic variation, but require extensive bioinformatic expertise for the analysis. There is thus a need for simple yet effective software that can analyse both existing and novel data, providing interpretable biological results with little bioinformatic prowess. We present seqCAT, a Bioconductor toolkit for analysing genetic variation in high throughput sequencing data. It is a highly accessible, easy-to-use and well-documented R-package that enables a wide range of researchers to analyse their own and publicly available data, providing biologically relevant conclusions and publication-ready figures. SeqCAT can provide information regarding genetic similarities between an arbitrary number of samples, validate specific variants as well as define functionally similar variant groups for further downstream analyses. Its ease of use, installation, complete data-to-conclusions functionality and the inherent flexibility of the R programming language make seqCAT a powerful tool for variant analyses compared to already existing solutions. A publicly available dataset of liver cancer-derived organoids is analysed herein using the seqCAT package, demonstrating that the organoids are genetically stable. A previously known liver cancer-related mutation is additionally shown to be present in a sample though it was not listed in the original publication. Differences between DNA- and RNA-based variant calls in this dataset are also analysed revealing a high median concordance of 97.5%.


2017 ◽  
Author(s):  
Nicholas D. Youngblut ◽  
Samuel E. Barnett ◽  
Daniel H. Buckley

AbstractCombining high throughput sequencing with stable isotope probing (HTS-SIP) is a powerful method for mapping in situ metabolic processes to thousands of microbial taxa. However, accurately mapping metabolic processes to taxa is complex and challenging. Multiple HTS-SIP data analysis methods have been developed, including high-resolution stable isotope probing (HR-SIP), multi-window high-resolution stable isotope probing (MW-HR-SIP), quantitative stable isotope probing (q-SIP), and ΔBD. Currently, the computational tools to perform these analyses are either not publicly available or lack documentation, testing, and developer support. To address this shortfall, we have developed the HTSSIP R package, a toolset for conducting HTS-SIP analyses in a straightforward and easily reproducible manner. The HTSSIP package, along with full documentation and examples, is available from CRAN at https://cran.r-project.org/web/packages/HTSSIP/index.html and Github at https://github.com/nick-youngblut/HTSSIP.


F1000Research ◽  
2019 ◽  
Vol 7 ◽  
pp. 1466 ◽  
Author(s):  
Erik Fasterius ◽  
Cristina Al-Khalili Szigyarto

High throughput sequencing technologies are flourishing in the biological sciences, enabling unprecedented insights into e.g. genetic variation, but require extensive bioinformatic expertise for the analysis. There is thus a need for simple yet effective software that can analyse both existing and novel data, providing interpretable biological results with little bioinformatic prowess. We present seqCAT, a Bioconductor toolkit for analysing genetic variation in high throughput sequencing data. It is a highly accessible, easy-to-use and well-documented R-package that enables a wide range of researchers to analyse their own and publicly available data, providing biologically relevant conclusions and publication-ready figures. SeqCAT can provide information regarding genetic similarities between an arbitrary number of samples, validate specific variants as well as define functionally similar variant groups for further downstream analyses. Its ease of use, installation, complete data-to-conclusions functionality and the inherent flexibility of the R programming language make seqCAT a powerful tool for variant analyses compared to already existing solutions. A publicly available dataset of liver cancer-derived organoids is analysed herein using the seqCAT package, corroborating the original authors' conclusions that the organoids are genetically stable. A previously known liver cancer-related mutation is additionally shown to be present in a sample though it was not listed in the original publication. Differences between DNA- and RNA-based variant calls in this dataset are also analysed revealing a high median concordance of 97.5%. SeqCAT is an open source software under a MIT licence available at https://bioconductor.org/packages/release/bioc/html/seqCAT.html.


MycoKeys ◽  
2018 ◽  
Vol 39 ◽  
pp. 29-40 ◽  
Author(s):  
Sten Anslan ◽  
R. Henrik Nilsson ◽  
Christian Wurzbacher ◽  
Petr Baldrian ◽  
Leho Tedersoo ◽  
...  

Along with recent developments in high-throughput sequencing (HTS) technologies and thus fast accumulation of HTS data, there has been a growing need and interest for developing tools for HTS data processing and communication. In particular, a number of bioinformatics tools have been designed for analysing metabarcoding data, each with specific features, assumptions and outputs. To evaluate the potential effect of the application of different bioinformatics workflow on the results, we compared the performance of different analysis platforms on two contrasting high-throughput sequencing data sets. Our analysis revealed that the computation time, quality of error filtering and hence output of specific bioinformatics process largely depends on the platform used. Our results show that none of the bioinformatics workflows appears to perfectly filter out the accumulated errors and generate Operational Taxonomic Units, although PipeCraft, LotuS and PIPITS perform better than QIIME2 and Galaxy for the tested fungal amplicon dataset. We conclude that the output of each platform requires manual validation of the OTUs by examining the taxonomy assignment values.


2018 ◽  
Vol 35 (13) ◽  
pp. 2326-2328 ◽  
Author(s):  
Tobias Jakobi ◽  
Alexey Uvarovskii ◽  
Christoph Dieterich

Abstract Motivation Circular RNAs (circRNAs) originate through back-splicing events from linear primary transcripts, are resistant to exonucleases, are not polyadenylated and have been shown to be highly specific for cell type and developmental stage. CircRNA detection starts from high-throughput sequencing data and is a multi-stage bioinformatics process yielding sets of potential circRNA candidates that require further analyses. While a number of tools for the prediction process already exist, publicly available analysis tools for further characterization are rare. Our work provides researchers with a harmonized workflow that covers different stages of in silico circRNA analyses, from prediction to first functional insights. Results Here, we present circtools, a modular, Python-based framework for computational circRNA analyses. The software includes modules for circRNA detection, internal sequence reconstruction, quality checking, statistical testing, screening for enrichment of RBP binding sites, differential exon RNase R resistance and circRNA-specific primer design. circtools supports researchers with visualization options and data export into commonly used formats. Availability and implementation circtools is available via https://github.com/dieterich-lab/circtools and http://circ.tools under GPLv3.0. Supplementary information Supplementary data are available at Bioinformatics online.


Genomics ◽  
2017 ◽  
Vol 109 (2) ◽  
pp. 83-90 ◽  
Author(s):  
Yan Guo ◽  
Yulin Dai ◽  
Hui Yu ◽  
Shilin Zhao ◽  
David C. Samuels ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document