Evolution of body size and trophic position in migratory fishes: a phylogenetic comparative analysis of Clupeiformes (anchovies, herring, shad and allies)

2018 ◽  
Vol 125 (2) ◽  
pp. 302-314 ◽  
Author(s):  
Devin D Bloom ◽  
Michael D Burns ◽  
Tiffany A Schriever
2020 ◽  
Vol 640 ◽  
pp. 189-200 ◽  
Author(s):  
AM Olson ◽  
A Frid ◽  
JBQ dos Santos ◽  
F Juanes

Intra- and interspecifically, larger-bodied predators generally occupy higher trophic positions (TPs). With widespread declines in large predators, there is a need to understand their size-based trophic roles to predict ecosystem-level responses. In British Columbia, Canada, we examined size-based trophic interactions between predatory fishes—3 rockfish species (genus Sebastes) and lingcod Ophiodon elongatus—and their prey, converting predator δ15N signatures to TP and analyzing stomach contents. Intraspecifically, TP scaled positively with predator length and gape width, but the rates of change varied by species. Interspecifically, TP did not scale positively with the observed mean sizes or known maximum sizes of species. Lingcod TP was lower than that of yelloweye and quillback rockfishes, which were 51 and 37%, respectively, smaller than lingcod. Yellowtail rockfish had the smallest average size, yet their mean TP did not differ significantly from that of lingcod. Neither species differences in some morphometric traits known to influence body size-TP relationships nor phylogenetic history explained these results. Most prey consumed were <20% of the predator’s size, which might partially explain the lack of a size-based trophic hierarchy among species. Currently, large size classes of rockfishes are being lost due to fisheries and perhaps climate-driven changes. Our findings on intraspecific size-TP relationships indicate that fishery removals of large individuals may diminish trophic structures. Interspecific comparisons of TP suggest that, along with size, species remain an important factor in understanding trophic dynamics. In addition, smaller-bodied predator species may have significant ecological roles to be considered in ecosystem-based fisheries management.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Massimiliano Drago ◽  
Marco Signaroli ◽  
Meica Valdivia ◽  
Enrique M. González ◽  
Asunción Borrell ◽  
...  

AbstractUnderstanding the trophic niches of marine apex predators is necessary to understand interactions between species and to achieve sustainable, ecosystem-based fisheries management. Here, we review the stable carbon and nitrogen isotope ratios for biting marine mammals inhabiting the Atlantic Ocean to test the hypothesis that the relative position of each species within the isospace is rather invariant and that common and predictable patterns of resource partitioning exists because of constrains imposed by body size and skull morphology. Furthermore, we analyze in detail two species-rich communities to test the hypotheses that marine mammals are gape limited and that trophic position increases with gape size. The isotopic niches of species were highly consistent across regions and the topology of the community within the isospace was well conserved across the Atlantic Ocean. Furthermore, pinnipeds exhibited a much lower diversity of isotopic niches than odontocetes. Results also revealed body size as a poor predictor of the isotopic niche, a modest role of skull morphology in determining it, no evidence of gape limitation and little overlap in the isotopic niche of sympatric species. The overall evidence suggests limited trophic flexibility for most species and low ecological redundancy, which should be considered for ecosystem-based fisheries management.


2019 ◽  
Vol 29 (2) ◽  
pp. 377-383
Author(s):  
Marina J. Nyqvist ◽  
Julien Cucherousset ◽  
Rodolphe E. Gozlan ◽  
William R.C. Beaumont ◽  
J. Robert Britton

2005 ◽  
Vol 62 (12) ◽  
pp. 2727-2739 ◽  
Author(s):  
Marcus Sundbom ◽  
Markus Meili

One decade after the Chernobyl fallout, the variability of 137Cs activity concentrations among fish within a Swedish lake was >20-fold based on 1361 individuals from seven species collected continually during 1996–1999. Of the total variability, 64% was due to differences between species but only 7% due to temporal variation, which was 1.3-fold for the whole community and 1.3- to 2-fold for population means. Contamination increased with body size (0.6- to 6-fold) and decreased with body condition in most species (1.3-fold). Body size and time together accounted for about half of the total variation within populations. Fish 137Cs was related to differences in feeding ecology, both between and within populations. Biomagnification factors ranged from 2.4 to 5.8. Contamination was highest in piscivorous populations and individuals, intermediate in herbivores and zooplanktivores, and lowest in fish specialized in benthic invertebrates despite their association with contaminated sediments. The 137Cs variance within populations was not correlated with their niche width but moderately positively correlated with fish trophic position and strongly positively correlated with functional omnivory (diversity in prey 137Cs). We conclude that individual resource specialization is an important source of variation in 137Cs concentrations within fish populations.


2014 ◽  
Vol 281 (1797) ◽  
pp. 20142103 ◽  
Author(s):  
Marlee A. Tucker ◽  
Tracey L. Rogers

Predator–prey relationships and trophic levels are indicators of community structure, and are important for monitoring ecosystem changes. Mammals colonized the marine environment on seven separate occasions, which resulted in differences in species' physiology, morphology and behaviour. It is likely that these changes have had a major effect upon predator–prey relationships and trophic position; however, the effect of environment is yet to be clarified. We compiled a dataset, based on the literature, to explore the relationship between body mass, trophic level and predator–prey ratio across terrestrial ( n = 51) and marine ( n = 56) mammals. We did not find the expected positive relationship between trophic level and body mass, but we did find that marine carnivores sit 1.3 trophic levels higher than terrestrial carnivores. Also, marine mammals are largely carnivorous and have significantly larger predator–prey ratios compared with their terrestrial counterparts. We propose that primary productivity, and its availability, is important for mammalian trophic structure and body size. Also, energy flow and community structure in the marine environment are influenced by differences in energy efficiency and increased food web stability. Enhancing our knowledge of feeding ecology in mammals has the potential to provide insights into the structure and functioning of marine and terrestrial communities.


Sign in / Sign up

Export Citation Format

Share Document