Latitudinal and altitudinal variation in ecologically important traits in a widespread butterfly

2019 ◽  
Vol 128 (3) ◽  
pp. 742-755 ◽  
Author(s):  
Franziska Günter ◽  
Michaël Beaulieu ◽  
Massimo Brunetti ◽  
Lena Lange ◽  
Angela Schmitz Ornés ◽  
...  

Abstract Understanding how organisms adapt to complex environments lies at the very heart of evolutionary biology and ecology, and is of particular concern in the current era of anthropogenic global change. Variation in ecologically important traits associated with environmental gradients is considered to be strong evidence for adaptive responses. Here, we study phenotypic variation along a latitudinal and an altitudinal cline in 968 field-collected males of the widespread European butterfly Pieris napi. In contrast to our expectations, body size decreased with increasing latitude and altitude, suggesting that warmer rather than cooler conditions may be more beneficial for individual development in this species. Higher altitudes but not latitudes seemed to be associated with increased flight performance, suggesting stronger challenges for flight activity in high-altitude environments (e.g. due to strong wind). Moreover, wing melanization increased while yellow reflectance decreased towards colder environments in both clines. Thus, increased melanization under thermally challenging conditions seems to compromise investment into a sexually selected trait, resulting in a trade-off. Our study, although exclusively based on field-collected males, revealed indications of adaptive patterns along geographical clines. It documents the usefulness of field-collected specimens, and the strength of comparing latitudinal and altitudinal clines to identify traits being potentially under thermal selection.

Ecology ◽  
2012 ◽  
Author(s):  
Herman A. Verhoef

At the beginning of the 20th century there was much debate about the “nature” of communities. The driving question was whether the community was a self-organized system of co-occurring species or simply a haphazard collection of populations with minimal functional integration. At that time, two extreme views dominated the discussion: one view considered a community as a superorganism, the member species of which were tightly bound together by interactions that contributed to repeatable patterns of species abundance in space and time. This concept led to the assumption that communities are fundamental entities, to be classified as the Linnaean taxonomy of species. Frederick E. Clements was one of the leading proponents of this approach, and his view became known as the organismic concept of communities. This assumes a common evolutionary history for the integrated species. The opposite view was the individualistic continuum concept, advocated by H. A. Gleason. His focus was on the traits of individual species that allow each to live within specific habitats or geographical ranges. In this view a community is an assemblage of populations of different species whose traits allow persisting in a prescribed area. The spatial boundaries are not sharp, and the species composition can change considerably. Consequently, it was discussed whether ecological communities were sufficiently coherent entities to be considered appropriate study objects. Later, consensus was reached: that properties of communities are of central interest in ecology, regardless of their integrity and coherence. From the 1950s and 1960s onward, the discussion was dominated by the deterministic outcome of local interactions between species and their environments and the building of this into models of communities. This approach, indicated as “traditional community ecology,” led to a morass of theoretical models, without being able to provide general principles about many-species communities. Early-21st-century approaches to bringing general patterns into community ecology concern (1) the metacommunity approach, (2) the functional trait approach, (3) evolutionary community ecology, and (4) the four fundamental processes. The metacommunity approach implicitly recognizes and studies the important role of spatiotemporal dynamics. In the functional trait approach, four themes are focused upon: traits, environmental gradients, the interaction milieu, and performance currencies. This functional, trait-focused approach should have a better prospect of understanding the effects of global changes. Evolutionary community ecology is an approach in which the combination of community ecology and evolutionary biology will lead to a better understanding of the complexity of communities and populations. The four fundamental processes are selection, drift, speciation, and dispersal. This approach concerns an organizational scheme for community ecology, based on these four processes to describe all existing specific models and frameworks, in order to make general statements about process–pattern connections.


2019 ◽  
Vol 286 (1902) ◽  
pp. 20190443 ◽  
Author(s):  
Alexander N. G. Kirschel ◽  
Nathalie Seddon ◽  
Joseph A. Tobias

A long-held view in evolutionary biology is that character displacement generates divergent phenotypes in closely related coexisting species to avoid the costs of hybridization or ecological competition, whereas an alternative possibility is that signals of dominance or aggression may instead converge to facilitate coexistence among ecological competitors. Although this counterintuitive process—termed convergent agonistic character displacement—is supported by recent theoretical and empirical studies, the extent to which it drives spatial patterns of trait evolution at continental scales remains unclear. By modelling the variation in song structure of two ecologically similar species of Hypocnemis antbird across western Amazonia, we show that their territorial signals converge such that trait similarity peaks in the sympatric zone, where intense interspecific territoriality between these taxa has previously been demonstrated. We also use remote sensing data to show that signal convergence is not explained by environmental gradients and is thus unlikely to evolve by sensory drive (i.e. acoustic adaptation to the sound transmission properties of habitats). Our results suggest that agonistic character displacement driven by interspecific competition can generate spatial patterns opposite to those predicted by classic character displacement theory, and highlight the potential role of social selection in shaping geographical variation in signal phenotypes of ecological competitors.


Author(s):  
Vikram Murthy

Purpose – The purpose of this paper is to develop a rich and textured narrative that utilises scholarly evidence, empirical research, and practitioner knowledge to shape, inform, and extend understanding of the leadership practice of “excelling at work” as it is enacted for zeitgeist organisational challenges. Design/methodology/approach – In order to achieve this, it traverses a temporal timeline from circa 350 BC to the present millennium, to examine extant theories and concepts and emerging wisdom at the intersection of domains as seemingly diverse as neuroscience, cognitive and social psychology, contemplative practice, positive psychology, and organisational behaviour and leadership. Findings – Complex environments require individual and collective agency for efficacious and adaptive responses. Extant theories and new insights on effectance, meaningful work, signature strengths, purposeful attention, self-control, deliberate practice, grit, explanatory styles, and mindsets amongst others, interconnect and at times intersect to form an empirically validated narrative on the augmented leadership practice of excelling at work in challenging times. Originality/value – Overcoming zeitgeist challenges adaptively, requires organisations and their people to excel at work. Innovative combinations and connections of key constructs and concepts, underpinned by empirical evidence from a variety of disciplines, explicate the nature and enactments of this vital leadership practice of excelling at work.


Science ◽  
2013 ◽  
Vol 339 (6119) ◽  
pp. 574-576 ◽  
Author(s):  
Andrew Berdahl ◽  
Colin J. Torney ◽  
Christos C. Ioannou ◽  
Jolyon J. Faria ◽  
Iain D. Couzin

The capacity for groups to exhibit collective intelligence is an often-cited advantage of group living. Previous studies have shown that social organisms frequently benefit from pooling imperfect individual estimates. However, in principle, collective intelligence may also emerge from interactions between individuals, rather than from the enhancement of personal estimates. Here, we reveal that this emergent problem solving is the predominant mechanism by which a mobile animal group responds to complex environmental gradients. Robust collective sensing arises at the group level from individuals modulating their speed in response to local, scalar, measurements of light and through social interaction with others. This distributed sensing requires only rudimentary cognition and thus could be widespread across biological taxa, in addition to being appropriate and cost-effective for robotic agents.


PLoS Biology ◽  
2021 ◽  
Vol 19 (8) ◽  
pp. e3001322
Author(s):  
Matthieu Leray ◽  
Laetitia G. E. Wilkins ◽  
Amy Apprill ◽  
Holly M. Bik ◽  
Friederike Clever ◽  
...  

Marine multicellular organisms host a diverse collection of bacteria, archaea, microbial eukaryotes, and viruses that form their microbiome. Such host-associated microbes can significantly influence the host’s physiological capacities; however, the identity and functional role(s) of key members of the microbiome (“core microbiome”) in most marine hosts coexisting in natural settings remain obscure. Also unclear is how dynamic interactions between hosts and the immense standing pool of microbial genetic variation will affect marine ecosystems’ capacity to adjust to environmental changes. Here, we argue that significantly advancing our understanding of how host-associated microbes shape marine hosts’ plastic and adaptive responses to environmental change requires (i) recognizing that individual host–microbe systems do not exist in an ecological or evolutionary vacuum and (ii) expanding the field toward long-term, multidisciplinary research on entire communities of hosts and microbes. Natural experiments, such as time-calibrated geological events associated with well-characterized environmental gradients, provide unique ecological and evolutionary contexts to address this challenge. We focus here particularly on mutualistic interactions between hosts and microbes, but note that many of the same lessons and approaches would apply to other types of interactions.


2019 ◽  
Author(s):  
Alexander N. G. Kirschel ◽  
Nathalie Seddon ◽  
Joseph A. Tobias

AbstractA long-held view in evolutionary biology is that character displacement generates divergent phenotypes in closely related coexisting species to avoid the costs of hybridisation or ecological competition, whereas an alternative possibility is that signals of dominance or aggression may instead converge to facilitate coexistence among ecological competitors. Although this counter-intuitive process—termed convergent agonistic character displacement—is supported by recent theoretical and empirical studies, the extent to which it drives spatial patterns of trait evolution at continental scales remains unclear. By modeling variation in song structure of two ecologically similar species of Hypocnemis antbird across western Amazonia, we show that their territorial signals converge such that trait similarity peaks in the sympatric zone, where intense interspecific territoriality between these taxa has previously been demonstrated. We also use remote sensing data to show that signal convergence is not explained by environmental gradients and is thus unlikely to evolve by sensory drive (i.e. acoustic adaptation to the sound transmission properties of habitats). Our results suggest that agonistic character displacement driven by interspecific competition can generate spatial patterns opposite to those predicted by classic character displacement theory, and highlight the potential role of social selection in shaping geographical variation in signal phenotypes of ecological competitors.


2015 ◽  
Vol 370 (1663) ◽  
pp. 20140069 ◽  
Author(s):  
Michael G. Elliot ◽  
Bernard J. Crespi

The relationship between phenotypic variation arising through individual development and phenotypic variation arising through diversification of species has long been a central question in evolutionary biology. Among humans, reduced placental invasion into endometrial tissues is associated with diseases of pregnancy, especially pre-eclampsia, and reduced placental invasiveness has also evolved, convergently, in at least 10 lineages of eutherian mammals. We tested the hypothesis that a common genetic basis underlies both reduced placental invasion arising through a developmental process in human placental disease and reduced placental invasion found as a derived trait in the diversification of Euarchontoglires (rodents, lagomorphs, tree shrews, colugos and primates). Based on whole-genome analyses across 18 taxa, we identified 1254 genes as having evolved adaptively across all three lineages exhibiting independent evolutionary transitions towards reduced placental invasion. These genes showed strong evidence of enrichment for associations with pre-eclampsia, based on genetic-association studies, gene-expression analyses and gene ontology. We further used in silico prediction to identify a subset of 199 genes that are likely targets of natural selection during transitions in placental invasiveness and which are predicted to also underlie human placental disorders. Our results indicate that abnormal ontogenies can recapitulate major phylogenetic shifts in mammalian evolution, identify new candidate genes for involvement in pre-eclampsia, imply that study of species with less-invasive placentation will provide useful insights into the regulation of placental invasion and pre-eclampsia, and recommend a novel comparative functional-evolutionary approach to the study of genetically based human disease and mammalian diversification.


2021 ◽  
Author(s):  
Badr Benjelloun ◽  
Kevin Leempoel ◽  
Frederic Boyer ◽  
Sylvie Stucki ◽  
Ian Streeter ◽  
...  

The extent to which genomic convergence shapes locally adapted phenotypes in different species remains a fundamental question in evolutionary biology. It would help assessing the relative role of historical contingencies versus determinism in evolution. To bring new insights to this debate we set up a framework which aimed to compare the adaptive trajectories of two domesticated mammal species co-distributed in diversified landscapes. We sequenced the genomes of 160 sheep and 161 goats extensively managed along environmental gradients, including temperature, rainfall, seasonality and altitude, to identify genes and biological processes shaping local adaptation. Allele frequencies at adaptive loci were rarely found to vary gradually along environmental gradients, but rather displayed a discontinuous shift at the extremities of environmental clines. Of the more than 430 adaptive genes identified, only 6 were orthologous between sheep and goats and those responded differently to environmental pressures, suggesting different adaptive mechanisms in these two closely related species. Such diversity of adaptive pathways may result from a high number of biological functions involved in adaptation to multiple eco-climatic gradients, and provides more arguments for the role of contingency and stochasticity in adaptation rather than repeatability and determinism.


2021 ◽  
Author(s):  
Nicholas Burnett ◽  
Marc Badger ◽  
Stacey Combes

Bees flying through natural landscapes encounter physical challenges, such as wind and cluttered vegetation. The influence of these factors on the flight performance of bees remains unknown. We analyzed 548 videos of wild-caught honeybees (Apis mellifera) flying through an enclosure containing a field of vertical obstacles that bees could fly within (through open corridors, without maneuvering) or above. We examined how obstacle field height, wind presence and direction (headwinds or tailwinds) affected altitude, ground speed, and side-to-side casting (lateral excursions) of bees. When obstacle fields were short, bees flew at altitudes near the midpoint between the tunnel floor and ceiling. When obstacle fields approached or exceeded this midpoint, bees typically, but not always, increased their altitudes to fly over the obstacles. Bees that flew above the obstacle fields exhibited 40% faster ground speeds and 36% larger lateral excursions than bees that flew within the obstacle fields, likely due to the visual feedback from obstacles and narrow space available within the obstacle field. Wind had a strong effect on ground speed and lateral excursions, but not altitude. Bees flew 12-19% faster in tailwinds than in the other wind conditions, but their lateral excursions were 19% larger in any wind, regardless of its direction, than in still air. Our results show that bees flying through complex environments display flexible flight behaviors (e.g., flying above versus within obstacles), which affect flight performance. Similar choices in natural landscapes could have broad implications for foraging efficiency, pollination, and mortality in wild bees.


Sign in / Sign up

Export Citation Format

Share Document