scholarly journals ZC3H4—a novel Cys-Cys-Cys-His-type zinc finger protein—is essential for early embryogenesis in mice†

Author(s):  
Jianmin Su ◽  
Xiaosu Miao ◽  
Danielle Archambault ◽  
Jesse Mager ◽  
Wei Cui

Abstract Zinc finger domains of the Cys-Cys-Cys-His (CCCH) class are evolutionarily conserved proteins that bind nucleic acids and are involved in various biological processes. Nearly 60 CCCH-type zinc finger proteins have been identified in humans and mice, most have not been functionally characterized. Here, we provide the first in vivo functional characterization of ZC3H4—a novel CCCH-type zinc finger protein. Our results show that although Zc3h4 mutant embryos exhibit normal morphology at E3.5 blastocyst stage, they cannot be recovered at E7.5 early post-gastrulation stage, suggesting implantation failure. Outgrowth assays reveal that mutant blastocysts either fail to hatch from the zona pellucida, or can hatch but do not form a typical inner cell mass colony, the source of embryonic stem cells (ESCs). Although there is no change in levels of reactive oxygen species, Zc3h4 mutants display severe DNA breaks and reduced cell proliferation. Analysis of lineage specification reveals that both epiblast and primitive endoderm lineages are compromised with severe reductions in cell number and/or specification in the mutant blastocysts. In summary, these findings demonstrate the essential role of ZC3H4 during early mammalian embryogenesis.

Development ◽  
1991 ◽  
Vol 113 (3) ◽  
pp. 815-824 ◽  
Author(s):  
M.B. Rogers ◽  
B.A. Hosler ◽  
L.J. Gudas

We have previously isolated a cDNA clone for a gene whose expression is reduced by retinoic acid (RA) treatment of F9 embryonal carcinoma cells. The nucleotide sequence indicated that this gene, Rex-1, encodes a zinc-finger protein and thus may be a transcriptional regulator. The Rex-1 message level is high in two lines of embryonic stem cells (CCE and D3) and is reduced when D3 cells are induced to differentiate using four different growth conditions. As expected for a stem-cell-specific message, Rex-1 mRNA is present in the inner cell mass (ICM) of the day 4.5 mouse blastocyst. It is also present in the polar trophoblast of the blastocyst. One and two days later, Rex-1 message is found in the ectoplacental cone and extraembryonic ectoderm of the egg cylinder (trophoblast-derived tissues), but its abundance is much reduced in the embryonic ectoderm which is directly descended from the ICM. Rex-1 is expressed in the day 18 placenta (murine gestation is 18 days), a tissue which is largely derived from trophoblast. The only tested adult tissue that contains detectable amounts of Rex-1 mRNA is the testis. In situ hybridization and northern analyses of RNA from germ-cell-deficient mouse testis and stage-specific germ cell preparations suggest that Rex-1 expression is limited to spermatocytes (germ cells undergoing meiosis). These results suggest that Rex-1 is involved in trophoblast development and spermatogenesis, and is a useful marker for studies of early cell fate determination in the ICM.


Reproduction ◽  
2020 ◽  
Vol 159 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Wei Cui ◽  
Agnes Cheong ◽  
Yongsheng Wang ◽  
Yuran Tsuchida ◽  
Yong Liu ◽  
...  

Microspherule protein 1 (MCRS1, also known as MSP58) is an evolutionarily conserved protein that has been implicated in various biological processes. Although a variety of functions have been attributed to MCRS1 in vitro, mammalian MCRS1 has not been studied in vivo. Here we report that MCRS1 is essential during early murine development. Mcrs1 mutant embryos exhibit normal morphology at the blastocyst stage but cannot be recovered at gastrulation, suggesting an implantation failure. Outgrowth (OG) assays reveal that mutant blastocysts do not form a typical inner cell mass (ICM) colony, the source of embryonic stem cells (ESCs). Surprisingly, cell death and histone H4 acetylation analysis reveal that apoptosis and global H4 acetylation are normal in mutant blastocysts. However, analysis of lineage specification reveals that while the trophoblast and primitive endoderm are properly specified, the epiblast lineage is compromised and exhibits a severe reduction in cell number. In summary, our study demonstrates the indispensable role of MCRS1 in epiblast development during early mammalian embryogenesis.


Development ◽  
1988 ◽  
Vol 102 (4) ◽  
pp. 793-803 ◽  
Author(s):  
V.E. Papaioannou ◽  
K.M. Ebert

Total cell number as well as differential cell numbers representing the inner cell mass (ICM) and trophectoderm were determined by a differential staining technique for preimplantation pig embryos recovered between 5 and 8 days after the onset of oestrus. Total cell number increased rapidly over this time span and significant effects were found between embryos of the same chronological age from different females. Inner cells could be detected in some but not all embryos of 12–16 cells. The proportion of inner cells was low in morulae but increased during differentiation of ICM and trophectoderm in early blastocysts. The proportion of ICM cells then decreased as blastocysts expanded and hatched. Some embryos were cultured in vitro and others were transferred to the oviducts of immature mice as a surrogate in vivo environment and assessed for morphology and cell number after several days. Although total cell number did not reach in vivo levels, morphological development and cell number increase was sustained better in the immature mice than in vitro. The proportion of ICM cells in blastocysts formed in vitro was in the normal range.


Zygote ◽  
1997 ◽  
Vol 5 (4) ◽  
pp. 309-320 ◽  
Author(s):  
Rabindranath de la Fuente ◽  
W. Allan King

SummaryThe mammalian blastocyst comprises an inner cell mass (ICM) and a trophectoderm cell layer. In this study the allocation of blastomeres to either cell lineage was compared between murine, porcine and bovine blastocysts. Chemical permeation of trophectoderm cells by the Ca2+ ionophore A23187 in combination with DNA-specific fluorochromes resulted in the differential staining of trophectoderm and ICM. Confocal microscopy confirmed the exclusive permeation of trophectoderm and the internal localisation of intact ICM cells in bovine blastocysts. Overall, differential cell counts were obtained in approximately 85% of the embryos assessed. Mean (±SEM) total cell numbers were 72.2 ± 3.1 and 93.1±5 for in vivo derived murine (n = 41) and porcine (n = 21) expanded blastocysts, respectively. Corresponding ICM cell number counts revealed ICM/total cell number ratios of 0.27 and 0.21, respectively. Comparison of in vivo (n = 20) and in vitro derived bovine embryos on day 8 (n = 29) or day 9 (n = 29) revealed a total cell number of 195.25±9.9, 166.14±9.9 and 105±6.7 at the expanded blastocyst stage with corresponding ICM/total cell ratios of 0.27, 0.23 and 0.23, respectively. While total cell numbers differed significantly among the three groups of bovine embryos (p<0.05), the ICM/total cell ratio did not. These results indicate that a similar proportion of cells is allocated to the ICM among blastocysts of genetically divergent species.


2010 ◽  
Vol 88 (3) ◽  
pp. 479-490 ◽  
Author(s):  
Guoliang Meng ◽  
Shiying Liu ◽  
Xiangyun Li ◽  
Roman Krawetz ◽  
Derrick E. Rancourt

Embryonic stem cells (ESCs) are derived from the inner cell mass (ICM) of the blastocyst. Because of their ability to differentiate into a variety of cell types, human embryonic stem cells (hESCs) provide an unlimited source of cells for clinical medicine and have begun to be used in clinical trials. Presently, although several hundred hESC lines are available in the word, only few have been widely used in basic and applied research. More and more hESC lines with differing genetic backgrounds are required for establishing a bank of hESCs. Here, we report the first Canadian hESC lines to be generated from cryopreserved embryos and we discuss how we navigated through the Canadian regulatory process. The cryopreserved human zygotes used in this study were cultured to the blastocyst stage, and used to isolate ICM via microsurgery. Unlike previous microsurgery methods, which use specialized glass or steel needles, our method conveniently uses syringe needles for the isolation of ICM and subsequent hESC lines. ICM were cultured on MEF feeders in medium containing FBS or serum replacer (SR). Resulting outgrowths were isolated, cut into several cell clumps, and transferred onto fresh feeders. After more than 30 passages, the two hESC lines established using this method exhibited normal morphology, karyotype, and growth rate. Moreover, they stained positively for a variety of pluripotency markers and could be differentiated both in vitro and in vivo. Both cell lines could be maintained under a variety of culture conditions, including xeno-free conditions we have previously described. We suggest that this microsurgical approach may be conducive to deriving xeno-free hESC lines when outgrown on xeno-free human foreskin fibroblast feeders.


Reproduction ◽  
2007 ◽  
Vol 133 (1) ◽  
pp. 231-242 ◽  
Author(s):  
Craig Smith ◽  
Debbie Berg ◽  
Sue Beaumont ◽  
Neil T Standley ◽  
David N Wells ◽  
...  

During somatic cell nuclear transfer (NT), the transcriptional status of the donor cell has to be reprogrammed to reflect that of an embryo. We analysed the accuracy of this process by comparing transcript levels of four developmentally important genes (Oct4,Otx2,Ifitm3,GATA6), a gene involved in epigenetic regulation (Dnmt3a) and three housekeeping genes (β-actin, β-tubulinandGAPDH) in 21 NT blastocysts with that in genetically half-identicalin vitroproduced (IVP,n=19) andin vivo(n=15) bovine embryos. We have optimised an RNA-isolation and SYBR-green-based real-time RT-PCR procedure allowing the reproducible absolute quantification of multiple genes from a single blastocyst. Our data indicated that transcript levels did not differ significantly between stage and grade-matched zona-free NT and IVP embryos except for Ifitm3/Fragilis, which was expressed at twofold higher levels in NT blastocysts.Ifitm3expression is confined to the inner cell mass at day 7 blastocysts and to the epiblast in day 14 embryos. No ectopic expression in the trophectoderm was seen in NT embryos. Gene expression in NTand IVP embryos increased between two- and threefold for all eight genes from early to late blastocyst stages. This increase exceeded the increase in cell number over this time period indicating an increase in transcript number per cell. Embryo quality (morphological grading) was correlated to cell number for NT and IVP embryos with grade 3 blastocysts containing 30% fewer cells. However, only NT embryos displayed a significant reduction in gene expression (50%) with loss of quality. Variability in gene expression levels was not significantly different in NT, IVP orin vivoembryos but differed among genes, suggesting that the stringency of regulation is intrinsic to a gene and not affected by culture or nuclear transfer.Oct4levels exhibited the lowest variability. Analysing the total variability of all eight genes for individual embryos revealed thatin vivoembryos resembled each other much more than did NT and IVP blastocysts. Furthermore,in vivoembryos, consisting of 1.5-fold more cells, generally contained two- to fourfold more transcripts for the eight genes than did their cultured counterparts. Thus, culture conditions (in vivoversusin vitro) have greater effects on gene expression than does nuclear transfer when minimising genetic heterogeneity.


2009 ◽  
Vol 21 (1) ◽  
pp. 191
Author(s):  
V. J. Hall ◽  
J. Christensen ◽  
P. Maddox-Hyttel

Pluripotency in mice and human embryonic stem cells is regulated by a number of transcription factors, notably including Oct-4, Sox-2, and Nanog. However, in the pig, previous research indicates that Oct-4 protein and mRNA is not specifically localized to the inner cell mass (ICM) of the zona-intact (ZI) blastocyst. Levels of expression of Nanog mRNA, on the other hand, appear to be low in the ZI blastocyst, and protein has not been detected. Similarly, Sox-2 expression in the ZI blastocyst is relatively low and not specific to the ICM. In this study, we investigated the mRNA expression of Oct-4, Sox-2, and Nanog in D6/D7-derived ZI porcine in vivo-derived blastocysts compared with epiblasts mechanically isolated from hatched D10/D11 in vivo-derived blastocysts. We then investigated components involved in pathways important for regulating pluripotency, including JAK/STAT (i.e. gp130, LIFr), FGF (i.e. bFGF, FGFr1, FGFr2), and BMP (bmp4, smad4) signaling pathways and their downstream targets, stat3, c-myc, c-fos, by using RT-PCR. Sows were artificially inseminated, and embryos were flushed from uteri following slaughter. Single D6/D7 blastocysts (n = 3), single mechanically isolated D10/D11 epiblasts (n = 3), endometrium, and oviduct total RNA was isolated using the RNeasy Micro Kit (Qiagen, Valencia, CA, USA). Total RNA from the blastocysts and epiblasts was then amplified to form cDNA using the QuantiTect Whole Transcriptome kit (Qiagen). Positive control tissues (oviduct and endometrium) were reverse transcribed using the RevertAid First Strand cDNA synthesis kit (Fermentas, Burlington, Ontario, Canada). Primers were designed to span introns in highly homologous sequences to human mRNA. Primers were tested in both oviduct and endometrium tissue, and products were sequenced to confirm specificity. PCR was performed at 55°C for 35 cycles. Results indicate that D6/D7 blastocysts only expressed Oct-4 and not Nanog and Sox-2. In contrast, all 3 transcripts were expressed in D10/D11 epiblasts. The D10/D11 epiblasts also expressed LIFr, bFGF, FGFr1, FGFr2, bmp4, smad4, stat3, c-myc, and c-fos. The cytokine receptor gp130 was only weakly expressed in a single epiblast. In contrast, the earlier stage D6/D7 blastocysts failed to express these messengers with the exception of weak expression of gp130 in all 3 blastocysts, and only a single blastocyst expressed LIFr, smad4, c-myc, and c-fos. In conclusion, this study indicates that the ICM of the porcine D6/D7 ZI blastocyst has not developed pluripotency signaling as observed in mice and humans at this developmental stage. Furthermore, without expression of gp130, the JAK/STAT pathway is unlikely to play a role in regulating pluripotency in the epiblast. It is likely that the later stage epiblast may be more amenable for the derivation of porcine embryonic stem cells.


2009 ◽  
Vol 21 (9) ◽  
pp. 21
Author(s):  
J. M. Campbell ◽  
I. Vassiliev ◽  
M. B. Nottle ◽  
M. Lane

Human ESCs are produced from embryos donated at the mid-stage of pre-implantation development. This cryostorage reduced viability. However, it has been shown that this can be improved by the addition of growth factors to culture medium. The aim of the present study was to examine whether the addition of insulin to embryo culture medium from the 8-cell stage of development increases the number of ES cell progenitor cells in the epiblast in a mouse model. In vivo produced mouse zygotes (C57Bl6 strain) were cultured in G1 medium for 48h to the 8-cell stage, followed by culture in G2 supplemented with insulin (0, 0.17, 1.7 and 1700pM) for 68h, at 37 o C , in 5% O2, 6%CO2, 89% N2 . The number of cells in the inner cell mass (ICM) and epiblast was determined by immunohistochemical staining for Oct4 and Nanog. ICM cells express Oct4, epiblast cells express both Oct4 and Nanog. The addition of insulin at the concentrations examined did not increase the ICM. However, at 1.7pM insulin increased the number of epiblast cells (6.6±0.5 cells vs 4.1±0.5, P=0.001) in the ICM, which increased the proportion of the ICM that was epiblast (38.9±3.7% compared to 25.8±3.4% in the control P=0.01). This indicates that the increase in the epiblast is brought about by a shift in cell fate as opposed to an increase in cell division. The effect of insulin on the proportion of cells in the epiblast was investigated using inhibitors of phosphoinositide3-kinase (PI3K) (LY294002, 50µM); one of insulin's main second messengers, and p53 (pifithrin-α, 30µg/ml); a pro-apoptotic protein inactivated by PI3K. Inhibition of PI3K eliminated the increase caused by insulin (4.5±0.3 cells versus 2.2±0.3 cells, P<0.001), while inhibition of p53 increased the epiblast cell number compared to the control (7.1±0.8 and 4.1±0.7 respectively P=0.001). This study shows that insulin increases epiblast cell number through the activation of PI3K and the inhibition of p53, and may be a strategy for improving ESC isolation from human embryos.


2013 ◽  
Vol 33 (19) ◽  
pp. 3936-3950 ◽  
Author(s):  
D. Bogani ◽  
M. A. J. Morgan ◽  
A. C. Nelson ◽  
I. Costello ◽  
J. F. McGouran ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document