Kisspeptin/Kiss1r system and angiogenic and immunological mediators at the maternal-fetal interface of domestic cats

Author(s):  
Luciano Cardoso Santos ◽  
Jeane Martinha dos Anjos Cordeiro ◽  
Larissa da Silva Santana ◽  
Bianca Reis Santos ◽  
Erikles Macêdo Barbosa ◽  
...  

Abstract The Kisspeptin/Kiss1r system is a key regulator of reproduction by stimulating gonadotrophin-releasing hormone (GnRH) and luteinizing hormone (LH) release, and in vitro studies have shown that Kisspeptin can modulate angiogenesis and immune function, factors that are also essential for reproduction However, there are no studies on the expression of Kisspeptin/Kiss1r at the maternal-fetal interface in domestic cats and its relationship with angiogenic and immunological mediators. Thus, our objective was to evaluate the spatiotemporal expression profile of Kisspeptin/Kiss1r and angiogenic and immunological mediators in the uterus and placenta of domestic cats during pregnancy. Uterus and placenta samples were collected from cats in mid pregnancy (N = 6) and late pregnancy (N = 6), in addition to uterus from non-pregnant cats in diestrus (N = 7), to evaluate protein and gene expression of Kiss1, Kiss1r, VEGF, Flk-1, PLGF, INFγ, MIF, TNFα, IL6, and IL10 by immunohistochemistry and qPCR. Pregnancy increased the uterine expression of Kiss1 and Kiss1r, especially at the late pregnancy, in addition to upregulating INFy, MIF, Vegf, Il10, and Tnf and downregulating Plgf. Higher placental expression of Kiss1r and Plgf mRNA occurred at the late pregnancy, while the expression of Kiss1, VEGF, Flk-1, INFy, TNFα, Il6, and IL10 was higher in the mid of pregnancy. A positive correlation between Kiss1 and Tnf was observed in the placenta, while Kiss1r had a negative correlation with Infγ, Il6, and Il10. The findings reveal that Kisspeptin/Kiss1r and angiogenic and immunological mediators at the maternal-fetal interface of pregnant cat have a gene correlation and are modulated by the gestational age. These data suggest possible functional links of Kisspeptin in placental angiogenesis and immunology.

1995 ◽  
Vol 145 (1) ◽  
pp. 113-119 ◽  
Author(s):  
J J Evans ◽  
S J Hurd ◽  
D R Mason

Abstract Although GnRH is believed to be the primary secretagogue for LH, oxytocin has also been shown to stimulate LH release from the anterior pituitary. We investigated the possibility that the two secretagogues interact in the modulation of LH release. Anterior pituitaries were removed from adult female rats at pro-oestrus, and tissue pieces were pre-incubated in oxytocin for 3 h prior to being stimulated with 15 min pulses of GnRH. LH output over the 1 h period from the beginning of the GnRH pulse was determined. Control incubations were carried out in the absence of oxytocin, and background secretory activities without GnRH stimulation were also determined. Tissue which was pre-exposed to oxytocin (0·012–1·25 μm) had an increased LH response to GnRH (1·25 nm). The increase was larger than the sum of the LH outputs obtained with oxytocin and GnRH separately, revealing that oxytocin synergistically enhanced LH secretion elicited by GnRH (P<0·05; ANOVA). If stimulation by GnRH was delayed for 2 h after incubation with oxytocin, an increase in LH secretion was still observed, indicating that oxytocin-induced modulation did not rapidly disappear. Oxytocin pre-incubation was observed to result in an increase of maximal GnRH-induced LH output (P<0·001; t-test), as well as an increase of intermediate responses. The LH response of the anterior pituitary to subsequent pulses of GnRH was modified by the self-priming process. The effect of oxytocin pretreatment on the response of primed tissue to GnRH was also investigated. It was found that pre-incubation in oxytocin also enhanced the LH response of primed tissue to GnRH. The study has revealed that oxytocin increases the LH output of anterior pituitary tissue in response to GnRH. The effect occurs on both GnRH-primed and unprimed tissues. The results suggest that oxytocin has the potential to regulate the dynamics of the pro-oestrous LH surge. Journal of Endocrinology (1995) 145, 113–119


1982 ◽  
Vol 95 (1) ◽  
pp. 37-41 ◽  
Author(s):  
M. Wilkinson ◽  
R. Bhanot ◽  
J. A. Pincock ◽  
L. Donald

We have investigated whether sexual maturation in female rats is affected by repeated flurothyl-induced convulsions. This treatment had no effect on the normal age-related increase in body weight though puberty (vaginal opening) was significantly delayed when compared with non-convulsed control rats. In an attempt to probe the mechanism of this delaying effect we observed that (1) anterior pituitary response to gonadotrophin releasing hormone in vitro was normal in terms of LH release but FSH secretion was impaired and (2) progesterone injection in oestrogen-primed convulsed rats failed to generate an ovulatory-type surge of LH or FSH. Basal serum levels and basal in-vitro secretion of LH and FSH were normal. We conclude that repeated convulsions adversely affect the hypothalamo-pituitary-gonadotrophin system of immature female rats.


1990 ◽  
Vol 127 (1) ◽  
pp. 149-159 ◽  
Author(s):  
S. Muttukrishna ◽  
P. G. Knight

ABSTRACT Primary cultures of ovine pituitary cells (from adult ewes) were used to investigate the actions of steroid-free bovine follicular fluid (bFF) and highly-purified Mr 32 000 bovine inhibin on basal and gonadotrophin-releasing hormone (GnRH)-induced release of FSH and LH. Residual cellular contents of each hormone were also determined allowing total gonadotrophin content/well to be calculated. As in rats, both crude and highly purified inhibin preparations promoted a dose (P < 0·001)- and time (P < 0·001)-dependent suppression of basal and GnRH-induced release of FSH as well as an inhibition of FSH synthesis, reflected by a fall in total FSH content/well. However, while neither inhibin preparation affected basal release of LH or total LH content/well, GnRH-induced LH release was significantly (P< 0·001) increased by the presence of either bFF (+ 75%) or highly-purified inhibin (+ 64%) in a dose- and time-dependent manner. This unexpected action of bFF on GnRH-induced LH release was abolished in the presence of 5 μl specific anti-inhibin serum, confirming that the response was indeed mediated by inhibin. Furthermore, neither oestradiol-17β (1 pmol/l–10 nmol/l) nor monomeric α-subunit of bovine inhibin (2·5–40 ng/ml) significantly affected basal or GnRH-induced release of LH. These in-vitro findings for the ewe lend support to a number of recent in-vivo observations and indicate that, in addition to its well-documented suppressive effect on the synthesis and secretion of FSH, inhibin may actually facilitate LH release in this species, in marked contrast to its action in the rat. Journal of Endocrinology (1990) 127, 149–159


1998 ◽  
Vol 159 (1) ◽  
pp. 103-110 ◽  
Author(s):  
U Fingscheidt ◽  
GF Weinbauer ◽  
HL Fehm ◽  
E Nieschlag

The effects of bovine inhibin, testosterone and GnRH on gonadotrophin secretion by primate pituitary cells were characterized in vitro using pituitaries from six male rhesus monkeys and one male cynomolgus monkey. The effect of inhibin on basal secretion of FSH and LH was investigated. Dose-response curves in monkeys and rats were compared. GnRH dose-response curves in the presence and absence of testosterone were also examined in monkeys. In monkey pituitary cells, testosterone at a concentration of 10(-7) M had no effect on LH or FSH secretion. Inhibin suppressed FSH secretion to 50.8% of that of controls with no effect on LH. In rats, FSH secretion was suppressed to 45.0% of that of controls with a median effective dose (ED50, 95% range) of 1.298 (1.064-1.584) U/ml, compared with 1.024 (0.7204-1.455) U/ml in monkeys. In monkey pituitary cells, LH release was stimulated 9.9-fold and FSH 3.3-fold by GnRH. Testosterone had no effect on basal or GnRH-stimulated gonadotrophin release. These results support the view that the pituitary is not the target organ for the negative feedback action of testosterone in the male. In vitro, inhibin is the major regulator of FSH secretion at the pituitary level.


1992 ◽  
Vol 134 (3) ◽  
pp. 427-436 ◽  
Author(s):  
D. W. Koppenaal ◽  
A. M. I. Tijssen ◽  
J. de Koning

ABSTRACT The present study was designed to explore further the functional antagonism between gonadotrophin-releasing hormone (GnRH) and the ovarian factor, gonadotrophin surge-inhibiting factor (GnSIF). In all experiments, pituitary tissue was exposed to various amounts of GnSIF, after which the self-priming action of GnRH was studied. GnSIF was increased in vivo by FSH treatment and increased in vitro by adding various amounts of follicular fluid (FF) to cultured pituitary cells. Treatment with 3 or 10 IU FSH suppressed the initial LH response and delayed the maximally primed LH response to GnRH. Treatment with FSH was only effective in intact rats on days 1 and 2 of dioestrus. There was no difference in the rate of maximal LH release irrespective of treatment with either FSH or saline. Since FSH treatment was ineffective in long-term ovariectomized rats, it was concluded that the initial suppressive effect of FSH on LH release was mediated by GnSIF. Cycloheximide prevented the self-priming action of GnRH by inhibiting GnRH-induced protein synthesis. The initial protein synthesis-independent GnRH-stimulated LH release, which was already suppressed by FSH treatment, remained suppressed in the presence of cycloheximide. Pretreatment with GnRH in vivo increased the protein synthesis-independent GnRH-induced LH release during subsequent incubation of the glands. This increase did not occur after FSH treatment. Pituitary cells, cultured for 20 h in medium only, failed to elicit the self-priming effect of GnRH. Preincubation with FF maintained the self-priming effect. This was independent of the concomitant presence of various amounts of oestradiol. Preincubation with bovine FF suppressed the initial GnRH-stimulated LH release dose-dependently. Porcine FF, human FF and testicular extract suppressed the release of LH in a similar way. It was concluded that GnSIF suppresses the initial LH response to continuous GnRH stimulation. Increased levels of GnSIF caused by FSH treatment also delayed the primed LH release. The mechanism of functional antagonism between GnSIF and GnRH could give rise to the occurrence of the phenomenon of GnRH self-priming. Journal of Endocrinology (1992) 134, 427–436


1988 ◽  
Vol 119 (2) ◽  
pp. 233-241 ◽  
Author(s):  
P. G. Farnworth ◽  
D. M. Robertson ◽  
D. M. de Kretser ◽  
H. G. Burger

ABSTRACT The effects of 31 kDa bovine inhibin on the release of FSH and LH stimulated by gonadotrophin-releasing hormone (GnRH) or its agonist analogue buserelin have been studied using 5-day-old cultures of pituitary cells prepared from adult male Sprague–Dawley rats. Exposure of cultures to increasing concentrations of inhibin for 3 days before and during a 4-h stimulation with GnRH resulted in the progressive suppression of both basal and stimulated gonadotrophin release. At the highest inhibin concentrations FSH release was abolished (inhibin median inhibitory concentration (IC50) = 0·15 U/ml) whereas LH release was suppressed by 75% (IC50 = 0·93 U/ml). To correct for the reduced size of the FSH pool resulting from inhibin pretreatment, the amount of FSH or LH released by an agonist was expressed as a proportion of the total hormone available for release in each case. Following this adjustment, concentrations of inhibin producing maximal effects increased the GnRH median effective concentration for FSH release 4·1-fold and that for LH release 2·2-fold, with inhibin IC50 values of 0·45 and 0·32 U/ml respectively. Inhibin also suppressed the maximum proportion of both FSH and LH that excess GnRH released in 4 h by 36%, with IC50 values of 0·53 and 0·76 U/ml respectively. These effects were not changed by reduction of the inhibin pretreatment period from 3 days to 1 day or by exclusion of inhibin during the stimulation period. After a 3-day pretreatment, inhibin inhibited gonadotrophin release by buserelin less effectively than that by GnRH, but the pattern of antagonism was the same. The results show that purified bovine inhibin antagonizes the release of both FSH and LH stimulated by either GnRH or buserelin in vitro by reducing the apparent potency of GnRH agonists and by decreasing the proportion of total available gonadotrophin that can be released by an excess of GnRH agonist. Higher concentrations of inhibin are required for these common actions against stimulated release of FSH and LH than for the inhibition of FSH tonic synthesis/basal release, indicating one or more secondary sites of inhibin action in addition to its primary selective action to suppress the constitutive synthesis of FSH. J. Endocr. (1988) 119, 233–241


1989 ◽  
Vol 122 (1) ◽  
pp. 107-116 ◽  
Author(s):  
J. J. Evans ◽  
K. J. Catt

ABSTRACT Neurohypophysial hormones stimulate gonadotrophin release from dispersed rat anterior pituitary cells in vitro, acting through receptors distinct from those which mediate the secretory response to gonadotrophin-releasing hormone (GnRH). The LH response to oxytocin was not affected by the presence of the phosphodiesterase inhibitor, methyl isobutylxanthine, but was diminished in the absence of extracellular calcium and was progressively increased as the calcium concentration in the medium was raised to normal. In addition, the calcium channel antagonist, nifedipine, suppressed oxytocin-stimulated secretion of LH. It is likely that the mechanisms of LH release induced by GnRH and neurohypophysial hormones are similar, although stimulation of gonadotrophin secretion is mediated by separate receptor systems. Oxytocin was more active than vasopressin in releasing LH, but less active in releasing ACTH. The highly selective oxytocin agonist, [Thr4,Gly7]oxytocin, elicited concentration-dependent secretion of LH but had little effect on corticotrophin secretion. The neurohypophysial hormone antagonist analogues, [d(CH2)5Tyr(Me)2]-vasopressin, [d(CH2)5Tyr(Me)2,Orn8]vasotocin and [d(CH2)5d-Tyr(Et)2Val4,Cit8]vasopressin, inhibited the LH response to both oxytocin and vasopressin. However, [d(CH2)5Tyr(Me)2]vasopressin was much less effective in inhibiting the ACTH response to the neurohypophysial hormones, and [d(CH2)5Tyr-(Me)2,Orn8]vasotocin and [d(CH2)5d-Tyr(Et)2,Val4, Cit8]vasopressin exhibited no inhibitory activity against ACTH release. Thus, agonist and antagonist analogues of neurophypophysial hormones display divergent activities with regard to LH and ACTH responses, and the neuropeptide receptor mediating gonadotroph activation is clearly different from that on the corticotroph. Whereas the corticotroph receptor is a vasopressin-type receptor an oxytocin-type receptor is responsible for gonadotrophin release by neurohypophysial hormones. Journal of Endocrinology (1989) 122, 107–116


1994 ◽  
Vol 140 (3) ◽  
pp. 483-493 ◽  
Author(s):  
S Muttukrishna ◽  
P G Knight

Abstract To investigate the extent to which the direct actions of inhibin, activin and oestradiol on pituitary output of FSH and LH are dependent on the presence of functional gonadotrophin-releasing hormone (GnRH) receptors, we have compared the effects of these agents on cultured ovine pituitary cells derived from control and GnRH agonist-suppressed ewes. Chronic treatment with GnRH agonist reduced plasma LH and FSH levels (P<0·01) and abolished GnRH-induced release of LH and FSH both in vivo and in vitro. As expected, basal LH release and LH cell content in vitro were drastically reduced in GnRH agonist-suppressed cells (P<0·001). However, basal FSH release and FSH cell content were approximately twofold higher than in control cells (P<0·001). Irrespective of whether the cells had been desensitized to GnRH, inhibin and oestradiol were both found to suppress basal FSH release and FSH cell content in a dose-dependent fashion (P<0·001). Although inhibin had no effect on basal release of LH from control cells, it markedly enhanced GnRH-induced release (P<0·001). In contrast, inhibin increased (P<0·001) basal LH release from GnRH agonist-suppressed cells (which were unresponsive to the GnRH challenge). Inhibin had no overall effect on total LH content/well for either control or GnRH agonist-suppressed cells. Treatment with oestradiol, on the other hand, reduced total LH content/well, an effect which was more pronounced with GnRH agonist-suppressed cells (−44%; P<0·001) than with control cells (−14%, P<0·01). Whereas in control cells activin had no significant effect on any aspect of FSH production examined, in GnRH agonist-treated cells activin enhanced basal FSH release, residual cell content and total FSH content/well (P<0·001). Altering GnRH receptor status also modified the LH response to activin. With control cells activin increased basal release (P<0·001), decreased GnRH-induced release (P<0·001) and increased total LH content/well (P<0·001). With GnRH agonist-treated cells, however, activin had a uniform inhibitory effect on each aspect of LH production examined (P<0·001 in each case). It was concluded that desensitization of ovine gonadotrophs to GnRH by chronic agonist treatment results in a paradoxical enhancement of FSH output in vitro but has little effect on the responsiveness of the cells (in terms of gonadotrophin release and content) to either inhibin or oestradiol. In contrast, GnRH agonist treatment leads to qualitative changes in cellular reponsiveness to activin. Journal of Endocrinology (1994) 140, 483–493


1981 ◽  
Vol 97 (1) ◽  
pp. 26-32 ◽  
Author(s):  
Joseph C. Zolman ◽  
Lubomir J. Valenta

Abstract. LH release from the anterior pituitary was studied by the method of an in vitro superfusion of bovine anterior pituitary tissue slices. LH release was stimulated by increased potassium concentration (23 and 59 mm) and by synthetic GnRH (1 and 4 ng/ml). While the potassium effect was completely dependent on extracellular calcium, that of GnRH was only partially dependent. Additive effect was observed when GnRH followed enhanced potassium infusion but not vice versa. This suggested that the mechanism responding to potassium may be contained within the stimulatory pathway of GnRH. There was a difference in the dynamics of the LH response: maximum response was attained in about 10 min of potassium infusion while infusion of GnRH resulted mostly in multiphasic stepwise release of LH reaching a plateau in 60 to 90 min only. It is speculated that the potassium effect involves the K+, Na+ dependent ATPase.


Sign in / Sign up

Export Citation Format

Share Document