functional antagonism
Recently Published Documents


TOTAL DOCUMENTS

171
(FIVE YEARS 13)

H-INDEX

41
(FIVE YEARS 2)

2021 ◽  
Vol 11 ◽  
Author(s):  
Magali Belpaire ◽  
Bruno Ewbank ◽  
Arnaud Taminiau ◽  
Laure Bridoux ◽  
Noémie Deneyer ◽  
...  

Breast cancer is a heterogeneous disease and the leading cause of female cancer mortality worldwide. About 70% of breast cancers express ERα. HOX proteins are master regulators of embryo development which have emerged as being important players in oncogenesis. HOXA1 is one of them. Here, we present bioinformatic analyses of genome-wide mRNA expression profiles available in large public datasets of human breast cancer samples. We reveal an extremely strong opposite correlation between HOXA1 versus ER expression and that of 2,486 genes, thereby supporting a functional antagonism between HOXA1 and ERα. We also demonstrate in vitro that HOXA1 can inhibit ERα activity. This inhibition is at least bimodal, requiring an intact HOXA1 DNA-binding homeodomain and involving the DNA-binding independent capacity of HOXA1 to activate NF-κB. We provide evidence that the HOXA1-PBX interaction known to be critical for the transcriptional activity of HOXA1 is not involved in the ERα inhibition. Finally, we reveal that HOXA1 and ERα can physically interact but that this interaction is not essential for the HOXA1-mediated inhibition of ERα. Like other HOX oncoproteins interacting with ERα, HOXA1 could be involved in endocrine therapy resistance.


2021 ◽  
Author(s):  
Jie Lisa Ji ◽  
Grega Repovs ◽  
Genevieve J Yang ◽  
Aleksandar Savic ◽  
John D Murray ◽  
...  

Cognition depends on resisting interference and responding to relevant stimuli. Distracting information, however, varies based on content, requiring distinct filtering mechanisms. For instance, affective information captures attention, disrupts performance and attenuates activation along frontal-parietal regions during cognitive engagement, while recruiting bottom-up regions. Conversely, distraction matching task features (i.e. task-similar) increases fronto-parietal activity. Neural mechanisms behind unique effects of different distraction on cognition remain unknown. Using fMRI in 45 adults, we tested whether affective versus task-similar interference show distinct signals during delayed working memory (WM). We found robust differences between distractor types along fronto-parietal versus affective-ventral neural systems. We studied a hypothesized mechanism of this effect via a biophysically-based computational WM model that implements a functional antagonism between affective/cognitive neural 'modules'. This architecture reproduced experimental effects: task-similar distractors increased, whereas affective distractors attenuated cognitive module activity while increasing affective module signals. The model architecture suggested that task-based connectivity may be altered in affective-ventral vs. fronto-parietal networks depending on distractor type. Empirically, affective interference significantly increased connectivity within the affective-ventral network, but reduced connectivity between affective-ventral and fronto-parietal networks, which predicted WM performance. These findings detail an antagonistic architecture between cognitive and affective systems, capable of flexibly engaging distinct distractions during cognition.


2021 ◽  
Vol 7 (1) ◽  
pp. 41-46
Author(s):  
Petr D. Shabanov ◽  
Aleksandra A. Blazhenko ◽  
Aleksandr S. Devyashin ◽  
Platon P. Khokhlov ◽  
Andrei A. Lebedev

The aim: of the study was to investigate the level of ghrelin in various brain structures during a stress response in Zebrafish to a predator, to evaluate this indicator as a potential biomarker of stress, and the effect of a benzodiazepine tranquilizer (phenazepam) on stress-induced changes Materials and methods: The object of the study was Zebrafish, or Danio rerio wild type, which was subjected to stress by exposure to a predator Hypsophrys nicaraguensis from the cichlid family. In the tail tissue, the level of cortisol was determined, in the brain – the level of total (acylated and non-acylated) ghrelin by the method of enzyme-linked immunosorbent assay. The benzodiazepine anxiolytic phenazepam (1 mg/L), a ghrelin antagonist [D-Lys3]-GHRP-6 (0.333 mg/l) and corticotropin-releasing hormone (CRF; 0.4 mg/L) were used as the pharmacological agents. Results and discussion: Exposure to a predator, just as administering CRF, more than doubled the level of cortisol in the tail tissue. [D-Lys3]-GHRP-6 and phenazepam prevented an increase in a tissue cortisol level. Simultaneously, in the medulla oblongata and cerebellum, the phylogenetically most ancient structures, rather than in the forebrain (telencephalon) or in the midbrain (corpora bigemia), the level of ghrelin was recorded about 500 pg/g of total protein. In response to exposure to a predator, the level of ghrelin increased in the forebrain and midbrain to nanogram concentrations and moderately decreased in the cerebellum. The effect was prevented by phenazepam and [D-Lys3]-GHRP-6. Conclusion: Increases in ghrelin in the brain in response to stressful situations can be seen as a functional brain biomarker of stress, along with increased levels of tissue cortisol levels. Both of these effects are prevented by both the ghrelin antagonist and the benzodiazepine tranquilizer. The mechanism of action of the tranquilizer is a functional antagonism between the GABAergic system of the brain and the ghrelin system.


2020 ◽  
Author(s):  
Anna Eremenko ◽  
K. A. Zykov

Crosstalk between beta-2-adrenoceptor and M- cholinoreceptors in the airway plays one of the main role in the pathogenesis of bronchoobstructive diseases. The interaction of M3-cholinergic receptors and beta2-receptors in the lungs can be characterized as functional antagonism. M3 activation can lead to desensitization of beta2 receptors. Beta2 receptors also limit the action of M3 receptors in various ways. In this case, M2 cholinergic receptors act as autoreceptors. On the one hand, they limit bronchoconstriction caused by a change in the conformation of the M3 cholinergic receptor, and on the other hand, they are able to suppress the excessive bronchorelaxating effect that occurs when beta2 receptor is activated. Knowledge of the crosstalk mechanisms can help to understanad the pathogenesis of bronchial obstructive diseases, optimize existing treatment regimens for chronic obstructive disease (COPD) and bronchial asthma (BA)


2020 ◽  
Vol 14 (01) ◽  
pp. 31-45
Author(s):  
Chun-I Sze ◽  
Kuang-Yu Wen ◽  
Nan-Shan Chang

A recent large genome-wide association meta-analysis revealed that the human WWOX gene is regarded as one of the five newly identified risk factors for Alzheimer’s disease (AD). However, this study did not functionally characterize how WWOX protein deficiency affects AD initiation, progression and neurodegeneration. In this review, evidence and perspectives are provided regarding how WWOX works in limiting neurodegeneration. Firstly, loss of WWOX/Wwox gene leads to severe neural diseases with degeneration, metabolic disorder and early death in the newborns. Downregulation of pY33-WWOX may start at middle ages, and this leads to slow aggregation of a cascade of proteins, namely TRAPPC6A[Formula: see text], TIAF1 and SH3GLB2, that leads to amyloid-beta (A[Formula: see text]) formation and tau tangle formation in old-aged AD patients. Secondly, functional antagonism between tumor suppressors p53 and WWOX may occur in vivo, in which p53-mediated inflammation is blocked by WWOX. Loss of balance in the functional antagonism leads to aggregation of pathogenic proteins for AD such as tau and A[Formula: see text] in the brain cortex and hippocampus. Thirdly, downregulation of pY33-WWOX is accompanied by upregulation of pS14-WWOX. The event frequently correlates with enhanced AD progression and cancer cell growth in vivo. A small peptide Zfra4-10 dramatically suppresses pS14-WWOX and restores memory loss in triple transgenic (3xTg) mice, and inhibits cancer growth in mice as well. Finally, a supporting scenario is that WWOX deficiency induces enhanced cell migration and loss of cell-to-cell recognition. This allows the generation of neuronal heterotopia and associated epileptic seizure in WWOX-deficient newborn patients.


Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1200
Author(s):  
Zhan-Guo Gao ◽  
Kiran S. Toti ◽  
Ryan Campbell ◽  
R. Rama Suresh ◽  
Huijun Yang ◽  
...  

Allosteric antagonism by bitopic ligands, as reported for many receptors, is a distinct modulatory mechanism. Although several bitopic A2A adenosine receptor (A2AAR) ligand classes were reported as pharmacological tools, their receptor binding and functional antagonism patterns, i.e., allosteric or competitive, were not well characterized. Therefore, here we systematically characterized A2AAR binding and functional antagonism of two distinct antagonist chemical classes. i.e., fluorescent conjugates of xanthine amine congener (XAC) and SCH442416. Bitopic ligands were potent, weak, competitive or allosteric, based on the combination of pharmacophore, linker and fluorophore. Among antagonists tested, XAC, XAC245, XAC488, SCH442416, MRS7352 showed Ki binding values consistent with KB values from functional antagonism. Interestingly, MRS7396, XAC-X-BY630 (XAC630) and 5-(N,N-hexamethylene)amiloride (HMA) were 9–100 times weaker in displacing fluorescent MRS7416 binding than radioligand binding. XAC245, XAC630, MRS7396, MRS7416 and MRS7322 behaved as allosteric A2AAR antagonists, whereas XAC488 and MRS7395 antagonized competitively. Schild analysis showed antagonism slopes of 0.42 and 0.47 for MRS7396 and XAC630, respectively. Allosteric antagonists HMA and MRS7396 were more potent in displacing [3H]ZM241385 binding than MRS7416 binding. Sodium site D52N mutation increased and decreased affinity of HMA and MRS7396, respectively, suggesting possible preference for different A2AAR conformations. The allosteric binding properties of some bitopic ligands were rationalized and analyzed using the Hall two-state allosteric model. Thus, fluorophore tethering to an orthosteric ligand is not neutral pharmacologically and may confer unexpected properties to the conjugate.


2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Nan-Shan Chang ◽  
Pei-Yi Chou ◽  
Sing-Ru Lin ◽  
MIng-Hui Lee ◽  
Lori Schultz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document