scholarly journals Improved development of mouse SCNT embryos by chlamydocin analogues, class I and IIa histone deacetylase inhibitors†

Author(s):  
Satoshi Kamimura ◽  
Kimiko Inoue ◽  
Eiji Mizutani ◽  
Jin-Moon Kim ◽  
Hiroki Inoue ◽  
...  

Abstract In mammalian cloning by somatic cell nuclear transfer (SCNT), treatment of reconstructed embryos with histone deacetylase (HDAC) inhibitors improves efficiency. So far, most of those used for SCNT are hydroxamic acid derivatives—such as trichostatin A—characterized by their broad inhibitory spectrum. Here, we examined whether mouse SCNT efficiency could be improved using chlamydocin analogues, a family of newly designed agents that specifically inhibit Class I and IIa HDACs. Development of SCNT-derived embryos in vitro and in vivo revealed that four out of five chlamydocin analogues tested could promote the development of cloned embryos. The highest pup rates (7.1 to 7.2%) were obtained with Ky-9, similar to those achieved with trichostatin A (7.2 to 7.3%). Thus, inhibition of Class I and/or IIa HDACs in SCNT-derived embryos is enough for significant improvements in full-term development. In mouse SCNT, the exposure of reconstructed oocytes to HDAC inhibitors is limited to 8–10 h because longer inhibition with Class I inhibitors causes a 2-cell developmental block. Therefore, we used Ky-29, with higher selectivity for Class IIa than Class I HDACs for longer treatment of SCNT-derived embryos. As expected, 24-h treatment with Ky-29 up to the 2-cell stage did not induce a developmental block, but the pup rate was not improved. This suggests that the 1-cell stage is a critical period for improving SCNT cloning using HDAC inhibitors. Thus, chlamydocin analogues appear promising for understanding and improving the epigenetic status of mammalian SCNT-derived embryos through their specific inhibitory effects on HDACs.

2009 ◽  
Vol 21 (1) ◽  
pp. 124
Author(s):  
J. E. Oliver ◽  
T. Delaney ◽  
J. N. Oswald ◽  
M. C. Berg ◽  
B. Oback ◽  
...  

Previous studies in the mouse have shown treatment of somatic cell nuclear transfer (SCNT) embryos with histone deacetylase inhibitors (HDACi) to significantly increase cloning efficiency (Kishigami S et al. 2006 BBRC 340, 183–189; van Thuan N 2007 Asian Reproductive Biology Society 4, 9 abst). Increasing histone acetylation may open donor chromatin allowing better access for oocyte cytoplasmic factors to facilitate reprogramming. Here, we determined the effect of two HDACi, Trichostatin A (TSA), and scriptaid (Sigma-Aldrich, Castle Hill, NSW, Australia), on bovine cloning efficiency. Zona-free SCNT was performed with serum starved fibroblasts fused to enucleated MII-arrested IVM oocytes. After 4 h, reconstructs were activated with 5 μm ionomycin and 2 mm 6-dimethylaminopurine (DMAP) and cultured individually in 5 μL drops of AgResearch synthetic oviduct fluid (SOF) medium. Treatment with HDACi commenced concomitant with the 4 h DMAP incubation and continued in SOF for the remainder of the treatment period; totalling either 18 or 48 h post activation (hpa). TSA concentrations examined were: 0, 5, 50, and 500 nm, with all treatments containing 0.5% DMSO (n = 1121). Following TSA treatment, increased histone (H) acetylation at lysine (K) of H4K5 was confirmed by semi-quantitative immunofluorescence at the eight-cell stage. Scriptaid concentrations examined were: 0, 5, 50, 250, and 1000 nm, with all treatments containing 0.5% DMSO during DMAP and 0.1% DMSO during IVC (n = 1059). In vitro development on Day 7 was expressed in terms of transferable quality embryos as a percentage of reconstructs cultured. Data were analyzed using a generalized linear model with binomial variation and logit link. Embryos from selected treatments were transferred singularly to recipient cows on Day 7 with pregnancy data analyzed using Fisher’s exact test. Day 7 in vitro development was significantly greater with 5 nm TSA treatment for 18 hpa compared to controls (47.1% v. 34.5%; P < 0.02). Treatment of embryos with TSA for 48 hpa had no effect at any concentration tested. In contrast, scriptaid treatment for 18 hpa had no effect in vitro, while exposure for 48 hpa at 1000 nm significantly increased the development of transferable quality embryos compared to 0 nm (44.0% v. 32.4%; P < 0.005). There was no significant difference in embryo survival rates at D150 of gestation between embryos treated with 0 or 5 nm TSA for 18 hpa (8/48 v. 10/48; 16.7% v. 20.8%). However, in vivo development at Day 150 of gestation following treatment of embryos with 1000 nm scriptaid for 48 hpa was significantly lower compared to controls (1/37 v. 6/31; 2.7% v. 19.4%; P < 0.05). Contrary to the mouse, TSA or scriptaid treatment as used in this study did not increase cloning efficiency in cattle. The use of various HDACi either alone or in combination with DNA demethylating agents may still prove beneficial for reprogramming following nuclear transfer. Supported by FRST C10X0303.


Blood ◽  
2006 ◽  
Vol 108 (10) ◽  
pp. 3590-3599 ◽  
Author(s):  
Jose Sangerman ◽  
Moo Seung Lee ◽  
Xiao Yao ◽  
Eugene Oteng ◽  
Cheng-Hui Hsiao ◽  
...  

Abstract The histone deacetylase inhibitors (HDA-CIs) butyrate and trichostatin A activate γ-globin expression via a p38 mitogen-activating protein kinase (MAPK)-dependent mechanism. We hypothesized that down-stream effectors of p38 MAPK, namely activating transcription factor-2 (ATF-2) and cyclic AMP response element (CRE) binding protein (CREB), are intimately involved in fetal hemoglobin induction by these agents. In this study, we observed increased ATF-2 and CREB1 phosphorylation mediated by the HDACIs in K562 cells, in conjunction with histone H4 hyperacetylation. Moreover, enhanced DNA-protein interactions occurred in the CRE in the Gγ-globin promoter (G-CRE) in vitro after drug treatments; subsequent chromatin immunoprecipitation assay confirmed ATF-2 and CREB1 binding to the G-CRE in vivo. Enforced expression of ATF-2 and CREB produced Gγ-promoter trans-activation which was abolished by a 2-base pair mutation in the putative G-CRE. The data presented herein demonstrate that γ-gene induction by butyrate and trichostatin A involves ATF-2 and CREB1 activation via p38 MAPK signaling.


2007 ◽  
Vol 409 (2) ◽  
pp. 581-589 ◽  
Author(s):  
Nagma Khan ◽  
Michael Jeffers ◽  
Sampath Kumar ◽  
Craig Hackett ◽  
Ferenc Boldog ◽  
...  

The human HDAC (histone deacetylase) family, a well-validated anticancer target, plays a key role in the control of gene expression through regulation of transcription. While HDACs can be subdivided into three main classes, the class I, class II and class III HDACs (sirtuins), it is presently unclear whether inhibiting multiple HDACs using pan-HDAC inhibitors, or targeting specific isoforms that show aberrant levels in tumours, will prove more effective as an anticancer strategy in the clinic. To address the above issues, we have tested a number of clinically relevant HDACis (HDAC inhibitors) against a panel of rhHDAC (recombinant human HDAC) isoforms. Eight rhHDACs were expressed using a baculoviral system, and a Fluor de Lys™ (Biomol International) HDAC assay was optimized for each purified isoform. The potency and selectivity of ten HDACs on class I isoforms (rhHDAC1, rhHDAC2, rhHDAC3 and rhHDAC8) and class II HDAC isoforms (rhHDAC4, rhHDAC6, rhHDAC7 and rhHDAC9) was determined. MS-275 was HDAC1-selective, MGCD0103 was HDAC1- and HDAC2-selective, apicidin was HDAC2- and HDAC3-selective and valproic acid was a specific inhibitor of class I HDACs. The hydroxamic acid-derived compounds (trichostatin A, NVP-LAQ824, panobinostat, ITF2357, vorinostat and belinostat) were potent pan-HDAC inhibitors. The growth-inhibitory effect of the HDACis on HeLa cells showed that both pan-HDAC and class-I-specific inhibitors inhibited cell growth. The results also showed that both pan-HDAC and class-I-specific inhibitor treatment resulted in increased acetylation of histones, but only pan-HDAC inhibitor treatment resulted in increased tubulin acetylation, which is in agreement with their activity towards the HDAC6 isoform.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4164-4164
Author(s):  
Fumihiko Hayakawa ◽  
Issay Kitabayashi ◽  
Pier P. Pandolfi ◽  
Tomoki Naoe

Abstract The promyelocytic leukemia (PML) protein is a potent tumor suppressor and proapoptotic factor, and is functionally regulated by posttranslational modification such as phosphorylation, sumoylation, and ubiquitination. Histone deacetylase (HDAC) inhibitors are a promising class of targeted anticancer agents and induce apoptosis to cancer cells. In addition to their effects on histones, HDAC inhibitors increase the acetylation level of several non-histone proteins such as transcription factors, which are important for their effects to cancer cells. However, the mechanism of HDAC inhibitor-induced apoptocis is largely unknown. We report here a novel posttranscriptional modification, acetylation, of PML. By the screening using antibody array, we identified PML as a new acetylation target of Trichostatin A (TSA), a HDAC inhibitor. PML acetylation was enhanced by coexpression of p300 or treatment with TSA. We also showed that increased PML acetylation was associated with increased sumoylation of PML in vitro and in vivo. PML involvement in TSA-induced apoptosis was demonstrated by PML knocking down in Hela cells or PML overexpression in PML−/− MEF cells. Furthermore, PML with acetylation-defective mutation showed disability to mediate the apoptosis, suggesting the importance of PML acetylation for it. Our work provides new insights into the PML regulation by posttranslational modification, and new information about the therapeutic mechanism of HDAC inhibitors.


2019 ◽  
Vol 62 (2) ◽  
pp. 67-78 ◽  
Author(s):  
Gauthier Schang ◽  
Chirine Toufaily ◽  
Daniel J Bernard

Fertility is dependent on follicle-stimulating hormone (FSH), a product of gonadotrope cells of the anterior pituitary gland. Hypothalamic gonadotropin-releasing hormone (GnRH) and intra-pituitary activins are regarded as the primary drivers of FSH synthesis and secretion. Both stimulate expression of the FSH beta subunit gene (Fshb), although the underlying mechanisms of GnRH action are poorly described relative to those of the activins. There is currently no consensus on how GnRH regulates Fshb transcription, as results vary across species and between in vivo and in vitro approaches. One of the more fully developed models suggests that the murine Fshb promoter is tonically repressed by histone deacetylases (HDACs) and that GnRH relieves this repression, at least in immortalized murine gonadotrope-like cells (LβT2 and αT3-1). In contrast, we observed that the class I/II HDAC inhibitor trichostatin A (TSA) robustly inhibited basal, activin A-, and GnRH-induced Fshb mRNA expression in LβT2 cells and in primary murine pituitary cultures. Similar results were obtained with the class I specific HDAC inhibitor, entinostat, whereas two class II-specific inhibitors, MC1568 and TMP269, had no effects on Fshb expression. Collectively, these data suggest that class I HDACs are positive, not negative, regulators of Fshb expression in vitro and that, contrary to earlier reports, GnRH may not stimulate Fshb by inhibiting HDAC-mediated repression of the gene.


2015 ◽  
Vol 58 (19) ◽  
pp. 7672-7680 ◽  
Author(s):  
Yiwu Yao ◽  
Zhengchao Tu ◽  
Chenzhong Liao ◽  
Zhen Wang ◽  
Shang Li ◽  
...  

Author(s):  
Victoria M Richon ◽  
Xianbo Zhou ◽  
J.Paul Secrist ◽  
Carlos Cordon-Cardo ◽  
W.Kevin Kelly ◽  
...  

2019 ◽  
Vol 11 (21) ◽  
pp. 2765-2778
Author(s):  
Jie-Huan Zhang ◽  
Madhusoodanan Mottamal ◽  
Hai-Shan Jin ◽  
Shanchun Guo ◽  
Yan Gu ◽  
...  

Aim: Histone deacetylase (HDAC) is an attractive target for antitumor therapy. Therefore, the development of novel HDAC inhibitors is warranted. Materials & methods: A series of HDAC inhibitors based on N-hydroxycinnamamide fragment was designed as the clinically used belinostat analog using amide as the connecting unit. All target compounds were evaluated for their in vitro HDAC inhibitory activities and some selected compounds were tested for their antiproliferative activities. Conclusion: Among them, compound 7e showed an IC50 value of 11.5 nM in inhibiting the HDAC in a pan-HDAC assay, being the most active compound of the series.


Sign in / Sign up

Export Citation Format

Share Document