EFFECT OF RETINOIC ACID ON SEX DIFFERENTIATION IN XX AND XY PRIMORDIAL GERM CELLS

2007 ◽  
Vol 77 (Suppl_1) ◽  
pp. 207-208
Author(s):  
Yukiko Yamazaki ◽  
Hirotaka Yoshioka ◽  
Eleanor Low ◽  
Ryuzo Yanagimachi ◽  
Kazuhiro Iwahashi
Development ◽  
1972 ◽  
Vol 28 (2) ◽  
pp. 385-395
Author(s):  
Noriyuki Satoh ◽  
Nobuo Egami

Mitotic and meiotic activities of germ cells during early development in the medaka, Oryzias latipes, are dealt with in this report. Primordial germ cells were obviously distinguishable from somatic cells 3 days after fertilization and began to proliferate about 7 days after fertilization. The mean number of primordial germ cells increased during a period of 7–10 days after fertilization, reaching about 90 immediately before hatching. Newly hatched fry could be classified into two types according to the number and the nucleic activity of germ cells in the gonadal rudiment. One type consisted of fry containing about 100 germ cells and no cells in the meiotic prophase. In the other type of fry the number of germ cells increased by mitotic divisions and some of the cells began to enter into the meiotic prophase. During the course of further development the fry of the former type differentiated into males and the latter into females. Therefore it can be concluded that the morphological sex differentiation of germ cells occurs at the time of hatching. However, no sexual differences in the histological structure of somatic elements in the gonad are observable at that time.


1995 ◽  
Vol 168 (2) ◽  
pp. 683-685 ◽  
Author(s):  
Uichi Koshimizu ◽  
Miho Watanabe ◽  
Norio Nakatsuji

2018 ◽  
Vol 100 (3) ◽  
pp. 697-710 ◽  
Author(s):  
Akihiko Sakashita ◽  
Takuya Wakai ◽  
Yukiko Kawabata ◽  
Chiaki Nishimura ◽  
Yusuke Sotomaru ◽  
...  

Abstract The fertility of sex-reversed XY female mice is severely impaired by a massive loss of oocytes and failure of meiotic progression. This phenomenon remains an outstanding mystery. We sought to determine the molecular etiology of XY oocyte dysfunction by generating sex-reversed females that bear genetic ablation of Sry, a vital sex determination gene, on an inbred C57BL/6 background. These mutant mice, termed XYsry− mutants, showed severe attrition of germ cells during fetal development, resulting in the depletion of ovarian germ cells prior to sexual maturation. Comprehensive transcriptome analyses of primordial germ cells (PGCs) and postnatal oocytes demonstrated that XYsry− females had deviated significantly from normal developmental processes during the stages of mitotic proliferation. The impaired proliferation of XYsry− PGCs was associated with aberrant β-catenin signaling and the excessive expression of transposable elements. Upon entry to the meiotic stage, XYsry− oocytes demonstrated extensive defects, including the impairment of crossover formation, the failure of primordial follicle maintenance, and no capacity for embryo development. Together, these results suggest potential molecular causes for germ cell disruption in sex-reversed female mice, thereby providing insights into disorders of sex differentiation in humans, such as “Swyer syndrome,” in which patients with an XY karyotype present as typical females and are infertile.


2021 ◽  
Vol 46 (3) ◽  
Author(s):  
Meysam Hassani Moghaddam ◽  
Neda Eskandari ◽  
Hossein Nikzad ◽  
Mohammad Miryounesi ◽  
Mohammad Karimian ◽  
...  

2012 ◽  
Vol 36 (8) ◽  
pp. 705-712 ◽  
Author(s):  
Minli Yu ◽  
Chutian Ge ◽  
Weidong Zeng ◽  
Yuling Mi ◽  
Caiqiao Zhang

1953 ◽  
Vol 31 (2) ◽  
pp. 73-79 ◽  
Author(s):  
J. G. Robertson

The differentiation of the gonad is described in chum salmon embryos and alevins. Contrary to classical findings in teleosts, sex differentiation in the chum salmon proceeds in the male or female direction without an intermediate female phase. From an initially indifferent gonad there is a progressive development of one sex or the other. The organ forms as a fold from the splanchnic mesoderm and, at the time of first appearance, contains primordial germ cells. These enlarge to form the definitive germ cells which, after a series of divisions, form smaller oogonia or spermatogonia. Oogonia are followed by primary and secondary (growing) oocytes, the appearance of which is the criterion of sex distinction. Spermatogonia continue to multiply but do not undergo growth in the alevin. The ovary develops an open endovarial canal and is supported by a prominent mesovarium. The testis remains small and, in the alevin, develops no ducts. It is suspended by a mesorchium.


Endocrinology ◽  
2019 ◽  
Vol 161 (1) ◽  
Author(s):  
Ke Feng ◽  
Xuefan Cui ◽  
Yanlong Song ◽  
Binbin Tao ◽  
Ji Chen ◽  
...  

Abstract Gonadotropin-releasing hormone (Gnrh) plays important roles in reproduction by stimulating luteinizing hormone release, and subsequently ovulation and sperm release, ultimately controlling reproduction in many species. Here we report on a new role for this decapeptide. Surprisingly, Gnrh3-null zebrafish generated by CRISPR/Cas9 exhibited a male-biased sex ratio. After the dome stage, the number of primordial germ cells (PGCs) in gnrh3-/- fish was lower than that in wild-type, an effect that was partially rescued by gnrh3 overexpression. A terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) analysis revealed no detectable apoptosis of PGCs in gnrh3-/- embryos. Proliferating PGCs could be detected in wild-type embryos, while there was no detectable signal in gnrh3-/- embryos. Compared with wild type, the phosphorylation of AKT was not significantly different in gnrh3-/- embryos, but the phosphorylation of ERK1/2 decreased significantly. Treatment with a Gnrh analog (Alarelin) induced ERK1/2 phosphorylation and increased PGC numbers in both wild-type and gnrh3-/- embryos, and this was blocked by the MEK inhibitor PD0325901. The relative expression of sox9a, amh, and cyp11b were significantly upregulated, while cyp19a1a was significantly downregulated at 18 days post-fertilization in gnrh3-/- zebrafish. Taken together, these results indicate that Gnrh3 plays an important role in early sex differentiation by regulating the proliferation of PGCs through a MAPK-dependent path.


Development ◽  
1997 ◽  
Vol 124 (11) ◽  
pp. 2275-2284
Author(s):  
S.W. Luoh ◽  
P.A. Bain ◽  
R.D. Polakiewicz ◽  
M.L. Goodheart ◽  
H. Gardner ◽  
...  

The zinc-finger proteins ZFX and ZFY, encoded by genes on the mammalian X and Y chromosomes, have been speculated to function in sex differentiation, spermatogenesis, and Turner syndrome. We derived Zfx mutant mice by targeted mutagenesis. Mutant mice (both males and females) were smaller, less viable, and had fewer germ cells than wild-type mice, features also found in human females with an XO karyotype (Turner syndrome). Mutant XY animals were fully masculinized, with testes and male genitalia, and were fertile, but sperm counts were reduced by one half. Homozygous mutant XX animals were fully feminized, with ovaries and female genitalia, but showed a shortage of oocytes resulting in diminished fertility and shortened reproductive lifespan, as in premature ovarian failure in humans. The number of primordial germ cells was reduced in both XX and XY mutant animals at embryonic day 11.5, prior to gonadal sex differentiation. Zfx mutant animals exhibited a growth deficit evident at embryonic day 12.5, which persisted throughout postnatal life and was not complemented by the Zfy genes. These phenotypes provide the first direct evidence for a role of Zfx in growth and reproductive development.


Biomolecules ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 775 ◽  
Author(s):  
Tsutomu Endo ◽  
Maria M. Mikedis ◽  
Peter K. Nicholls ◽  
David C. Page ◽  
Dirk G. de Rooij

Retinoic acid (RA), a derivative of vitamin A, is critical for the production of oocytes and sperm in mammals. These gametes derive from primordial germ cells, which colonize the nascent gonad, and later undertake sexual differentiation to produce oocytes or sperm. During fetal development, germ cells in the ovary initiate meiosis in response to RA, whereas those in the testis do not yet initiate meiosis, as they are insulated from RA, and undergo cell cycle arrest. After birth, male germ cells resume proliferation and undergo a transition to spermatogonia, which are destined to develop into haploid spermatozoa via spermatogenesis. Recent findings indicate that RA levels change periodically in adult testes to direct not only meiotic initiation, but also other key developmental transitions to ensure that spermatogenesis is precisely organized for the prodigious output of sperm. This review focuses on how female and male germ cells develop in the ovary and testis, respectively, and the role of RA in this process.


Sign in / Sign up

Export Citation Format

Share Document