Adrenal Cortical Hormone Regulates Parathyroid Hormone-Like Hormone in the Kidney of Female and Male Mice.

2009 ◽  
Vol 81 (Suppl_1) ◽  
pp. 353-353
Author(s):  
Myung-Gi Baek ◽  
Eui-Bae Jeung
2006 ◽  
Vol 189 (2) ◽  
pp. 279-287 ◽  
Author(s):  
Yongmei Wang ◽  
Takeshi Sakata ◽  
Hashem Z Elalieh ◽  
Scott J Munson ◽  
Andrew Burghardt ◽  
...  

Parathyroid hormone (PTH) exerts both catabolic and anabolic actions on bone. Studies on the skeletal effects of PTH have seldom considered the effects of gender. Our study was designed to determine whether the response of mouse bone to PTH differed according to sex. As a first step, we analyzed gender differences with respect to bone mass and structural properties of 4 month old PTH treated (80 μg/kg per day for 2 weeks) male and female CD-1 mice. PTH significantly increased fat free weight/body weight, periosteal bone formation rate, mineral apposition rate, and endosteal single labeling surface, while significantly decreasing medullary area in male mice compared with vehicle treated controls, but induced no significant changes in female mice. We then analyzed the gender differences in bone marrow stromal cells (BMSC) isolated from 4 month old male and female CD-1 mice following treatment with PTH (80 μg/kg per day for 2 weeks). PTH significantly increased the osteogenic colony number and the alkaline phosphatase (ALP) activity (ALP/cell) by day 14 in cultures of BMSCs from male and female mice. PTH also increased the mRNA level of receptor activator of nuclear factor κB ligand in the bone tissue (marrow removed) of both females and males. However, PTH increased the mRNA levels of IGF-I and IGF-IR only in the bones of male mice. Our results indicate that on balance a 2-weeks course of PTH is anabolic on cortical bone in this mouse strain. These effects are more evident in the male mouse. These differences between male and female mice may reflect the greater response to PTH of IGF-I and IGF-IR gene expression in males enhancing the anabolic effect on cortical bone.


Life Sciences ◽  
2011 ◽  
Vol 89 (17-18) ◽  
pp. 615-620 ◽  
Author(s):  
Yeong-Min Yoo ◽  
Myung-Gi Baek ◽  
Eui-Man Jung ◽  
Hyun Yang ◽  
Kyung-Chul Choi ◽  
...  

2017 ◽  
Vol 42 (2) ◽  
pp. 551-563 ◽  
Author(s):  
Wei Zhou ◽  
Lipeng Yu ◽  
Jin Fan ◽  
Bowen Wan ◽  
Tao Jiang ◽  
...  

Background/Aims: Endogenous parathyroid hormone (PTH) plays an important role in fracture healing. This study investigated whether endogenous PTH regulates fracture healing by bone morphogenetic protein (BMP) and/or the transforming growth factor-β (TGF-β) signaling pathway. Methods: Eight-week-old wild-type (WT) and PTH-knockout (PTH KO) male mice were selected, and models of open right-femoral fracture were constructed. Fracture healing and callus characteristics of mice in the two groups were compared by X-ray, micro-computed tomography, histological, and immunohistochemical examinations. Bone marrow mesenchymal stem cells (BMMSCs) of 8-week-old WT and PTHKO male mice were obtained and induced into osteoblasts and chondrocytes. Results: We found that expression levels of Runt-related transcription factor (RUNX2), bone morphogenetic protein-receptor-type Ⅱ (BMPR2), phosphorylated Smad 1/5/8, and phosphorylated cyclic adenosine monophosphate-responsive element binding protein (CREB) in the callus of PTHKO mice were significantly decreased, whereas no significant difference in expression of SOX9, TGF-βR2,or pSMAD2/3 was observed between PTHKO and WT mice. Additionally, the activity of osteoblast alkaline phosphatase was low at 7 days post-induction, and was upregulated by addition of PTH or dibutyryl cyclic adenosine monophosphate (dbcAMP) to the cell culture. Furthermore, H89 (protein kinase A inhibitor)eliminated the simulating effects of PTH and dbcAMP, and a low concentration of cyclic adenosine monophosphate (cAMP) was observed in PTHKO mouse BMMSCs. Conclusion: These results suggested that endogenous PTH enhanced BMPR2 expression by a cAMP/PKA/CREB pathway in osteoblasts, and increased RUNX2 expression through transduction of the BMP/pSMAD1/5/8 signaling pathway.


1992 ◽  
Vol 29 (4) ◽  
pp. 343-350 ◽  
Author(s):  
A. Gröne ◽  
T. J. Rosol ◽  
W. Baumgärtner ◽  
C. C. Capen

The ultrastructure of parathyroid chief cells was examined from four groups of nude mice (NIH: Swiss) with different serum calcium concentrations. The groups consisted of eight male mice with hypercalcemia induced by transplantable canine adenocarcinoma (CAC-8), eight female mice with hypercalcemia induced by infusion of parathyroid hormone-related protein, ten male control mice, and six male mice fed a low calcium (0.01%) diet. Hypercalcemia induced by malignancy or parathyroid hormone-related protein infusion was associated with low serum phosphorus concentration, a decrease in the number of secretory and prosecretory granules in the parathyroid chief cells, and an increase in the cytoplasmic area of chief cells. Prominent myelinlike membranous whorls were present in the cytoplasm of chief cells of tumor-bearing and parathyroid hormone-related protein-infused hypercalcemic mice. Mice fed a low calcium diet had decreases in the number of secretory granules and cell area but increases in the number of prosecretory granules compared with control mice. The number of mitochondria and the nuclear area of chief cells were similar in all four groups. The prominent membranous whorls and increased cytoplasmic area of chief cells from these hypercalcemic mice mark these cells as distinctly different from the parathyroid chief cells of other species with hypercalcemia.


Author(s):  
K.K. SEKHRI ◽  
C.S. ALEXANDER ◽  
H.T. NAGASAWA

C57BL male mice (Jackson Lab., Bar Harbor, Maine) weighing about 18 gms were randomly divided into three groups: group I was fed sweetened liquid alcohol diet (modified Schenkl) in which 36% of the calories were derived from alcohol; group II was maintained on a similar diet but alcohol was isocalorically substituted by sucrose; group III was fed regular mouse chow ad lib for five months. Liver and heart tissues were fixed in 2.5% cacodylate buffered glutaraldehyde, post-fixed in 2% osmium tetroxide and embedded in Epon-araldite.


2007 ◽  
Vol 177 (4S) ◽  
pp. 617-617
Author(s):  
Klaus Steger ◽  
Irina Fenic ◽  
Hamid M. Hossain ◽  
Violetta Sonnack ◽  
Svetlin Tchatalbachev ◽  
...  
Keyword(s):  

2004 ◽  
Vol 171 (4S) ◽  
pp. 429-429
Author(s):  
Masayoshi Nomura ◽  
Naohiro Fujimoto ◽  
Donald W. Pfaff ◽  
Sonoko Ogawa ◽  
Tetsuro Matsumoto

Sign in / Sign up

Export Citation Format

Share Document